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Course Companion defi nition 
The IB Diploma Programme Course Companions are 

resource materials designed to support students 

throughout their two-year Diploma Programme course 

of  study in a particular subject. They will help students 

gain an understanding of  what is expected from the 

study of  an IB Diploma Programme subject while 

presenting content in a way that illustrates the purpose 

and aims of  the IB. They refl ect the philosophy and 

approach of  the IB and encourage a deep understanding 

of  each subject by making connections to wider issues 

and providing opportunities for critical thinking.

The books mirror the IB philosophy of  viewing the 

curriculum in terms of  a whole-course approach; the 

use of  a wide range of  resources, international 

mindedness, the IB learner profi le and the IB Diploma 

Programme core requirements, theory of  knowledge, 

the extended essay, and creativity, activity, service 

(CAS).

Each book can be used in conjunction with other 

materials and indeed, students of  the IB are required 

and encouraged to draw conclusions from a variety of  

resources. Suggestions for additional and further 

reading are given in each book and suggestions for how 

to extend research are provided.

In addition, the Course Companions provide advice and 

guidance on the specifi c course assessment requirements 

and on academic honesty protocol. They are distinctive 

and authoritative without being prescriptive.

IB mission statement
The International Baccalaureate aims to develop 

inquiring, knowledgable and caring young people who 

help to create a better and more peaceful world through 

intercultural understanding and respect.

To this end the IB works with schools, governments 

and international organizations to develop challenging 

programmes of  international education and rigorous 

assessment.

These programmes encourage students across the 

world to become active, compassionate, and lifelong 

learners who understand that other people, with their 

differences, can also be right.

The IB learner Profi le
The aim of  all IB programmes is to develop 

internationally minded people who, recognizing their 

common humanity and shared guardianship of  the 

planet, help to create a better and more peaceful world. 

IB learners strive to be:

Inquirers They develop their natural curiosity. They 

acquire the skills necessary to conduct inquiry and 

research and show independence in learning. They 

actively enjoy learning and this love of  learning will be 

sustained throughout their lives.

Knowledgable They explore concepts, ideas, and issues 

that have local and global signifi cance. In so doing, they 

acquire in-depth knowledge and develop understanding 

across a broad and balanced range of  disciplines.

Thinkers They exercise initiative in applying thinking 

skills critically and creatively to recognize and approach 

complex problems, and make reasoned, ethical 

decisions.

Communicators They understand and express ideas 

and information confi dently and creatively in more 

than one language and in a variety of  modes of  

communication. They work effectively and willingly in 

collaboration with others.

Principled They act with integrity and honesty, with a 

strong sense of  fairness, justice, and respect for the 

dignity of  the individual, groups, and communities. 

They take responsibility for their own actions and the 

consequences that accompany them.

Open-minded They understand and appreciate their 

own cultures and personal histories, and are open to 

the perspectives, values, and traditions of  other 

individuals and communities. They are accustomed to 

seeking and evaluating a range of  points of  view, and 

are willing to grow from the experience.

Caring They show empathy, compassion, and respect 

towards the needs and feelings of  others. They have a 

personal commitment to service, and act to make a 

positive difference to the lives of  others and to the 

environment.

Risk-takers They approach unfamiliar situations and 

uncertainty with courage and forethought, and have 

the independence of  spirit to explore new roles, ideas, 

and strategies. They are brave and articulate in 

defending their beliefs.

Balanced They understand the importance of  

intellectual, physical, and emotional balance to achieve 

personal well-being for themselves and others.

Refl ective They give thoughtful consideration to their 

own learning and experience. They are able to assess and 

understand their strengths and limitations in order to 

support their learning and personal development.
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A note on academic honesty
It is of  vital importance to acknowledge and 

appropriately credit the owners of  information 

when that information is used in your work. After 

all, owners of  ideas (intellectual property) have 

property rights. To have an authentic piece of  

work, it must be based on your individual and 

original ideas with the work of  others fully 

acknowledged. Therefore, all assignments, written 

or oral, completed for assessment must use your 

own language and expression. Where sources are 

used or referred to, whether in the form of  direct 

quotation or paraphrase, such sources must be 

appropriately acknowledged.

How do I acknowledge the 
work of others?

The way that you acknowledge that you have 

used the ideas of  other people is through the use 

of  footnotes and bibliographies.

Footnotes (placed at the bottom of  a page) or 

endnotes (placed at the end of  a document) are to 

be provided when you quote or paraphrase from 

another document, or closely summarize the 

information provided in another document. You 

do not need to provide a footnote for information 

that is part of  a ‘body of  knowledge’. That is, 

defi nitions do not need to be footnoted as they 

are part of  the assumed knowledge.

Bibliographies should include a formal list of  

the resources that you used in your work. The 

listing should include all resources, including 

books, magazines, newspaper articles, Internet-

based resources, CDs and works of  art. ‘Formal’ 

means that you should use one of  the several 

accepted forms of  presentation. You must provide 

full information as to how a reader or viewer 

of  your work can fi nd the same information. 

A bibliography  is compulsory in the extended 

essay.

What constitutes misconduct?
Misconduct is behaviour that results in, or may 

result in, you or any student gaining an unfair 

advantage in one or more assessment component. 

Misconduct includes plagiarism and collusion.

Plagiarism is defi ned as the representation of  the 

ideas or work of  another person as your own. 

The following are some of  the ways to avoid 

plagiarism:

● Words and ideas of  another person used to 

support one’s arguments must be 

acknowledged.

● Passages that are quoted verbatim must be 

enclosed within quotation marks and 

acknowledged.

● CD-ROMs, email messages, web sites on the 

Internet, and any other electronic media must 

be treated in the same way as books and 

journals.

● The sources of  all photographs, maps, 

illustrations, computer programs, data, graphs, 

audio-visual, and similar material must be 

acknowledged if  they are not your own work.

● Words of  art, whether music, fi lm, dance, 

theatre arts, or visual arts, and where the 

creative use of  a part of  a work takes place, 

must be acknowledged.

Collusion is defi ned as supporting misconduct by 

another student. This includes:

● allowing your work to be copied or submitted 

for assessment by another student

● duplicating work for different assessment 

components and/or diploma requirements.

Other forms of misconduct include any action 

that gives you an unfair advantage or affects the 

results of  another student. Examples include, 

taking unauthorized material into an examination 

room, misconduct during an examination, and 

falsifying a CAS record.
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About the book

The new syllabus for Mathematics Higher Level 

Option: Discrete Mathematics is thoroughly 

covered in this book. Each chapter is divided into 

lesson-size sections with the following features:

Did you know? History

Extension Advice

The Course Companion will guide you through 

the latest curriculum with full coverage of  all 

topics and the new internal assessment. The 

emphasis is placed on the development and 

improved understanding of  mathematical 

concepts and their real life application as well as 

profi ciency in problem solving and critical 

thinking. The Course Companion denotes 

questions that would be suitable for examination 

practice and those where a GDC may be used. 

Questions are designed to increase in diffi culty, 

strengthen analytical skills and build confi dence 

through understanding. 

Where appropriate the solutions to examples are 

given in the style of  a graphics display calculator. 

Mathematics education is a growing, ever 

changing entity. The contextual, technology 

integrated approach enables students to become 

adaptable, lifelong learners.

Note: US spelling has been used, with IB style for 

mathematical terms.
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Making sense of numbers2

Making sense 
of numbers1

CHAPTER OBJECTIVES:

10.1 Strong induction.

10.2  Division and Euclidean algorithms. The greatest common divisor, 

gcd(a, b), and the least common multiple, lcm(a, b), of integers a and b

10.3 Linear Diophantine equations ax + by = c

10.5 Representation of integers in different bases.

Before you start

1 Prove statements directly by factorization, 

e.g. n2 + 9n + 20 is an even number for all 

n ∈ Z+ since n2 + 9n + 20 ≡ (n + 4)(n + 5) 

which is a product of  two consecutive 

numbers. For any two consecutive integers, 

one of them must be even, and n 2 + 9n + 20

is the product of  an odd and an even 

positive integer making it even.

  Prove statements using mathematical 

induction, e.g. Prove the statement

P
n
 : i ni

i

n
n( ) ( )2 2 1 2

1

1





    

Proof: When n = 1,

LHS = 1 × 21 = 2, RHS = 2 + 0 = 2.

Therefore P
1
 is true.

Assume that P
k
 is true for some k ≥ 1.

i.e. i ki

i

k
k( ) ( )2 2 1 2

1

1





    

When n = k + 1,

i k ki

i

k
k k( ) ( ) ( )( )2 2 1 2 1 2

1

1
1 1




 

      

= 2 + 2k+1 (k − 1 + k + 1) = 2 + 2k (2k+1) 

= 2 + k × 2k+2

⇒ P
k+1

 is true.

Since P
1
 is true and it was shown that if  P

k

is true then P
k+1

 is also true, it follows by 

the principle of  mathematical induction 

that P
n
 is true for all n n 

1,  . Q.E.D.

1 a Show that n3 − n is divisible by 6 

for all n ∈ Z+

 b  Show that n5 − n is divisible by 30 

for all n ∈ Z+

2 a Prove the two statements in 

question 1 using the principle of  

mathematical induction.

b Using the principle of  mathematical 

induction prove that 

i i
i

n n n n
( )

( )( )
 




 

2
1

1 2 7
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Chapter 1 3

A brief journey through di erent number systems

One would think that human beings have a very good sense of  

numbers because of  our ability to count. However, studies show 

that tribal people who have not developed the skill of  counting 

have diffi culty discerning beyond the quantity 4. When it comes 

to number sense we are not much different from other species 

in the animal kingdom. However, although our number sense 

is limited, we are all able to learn how to count and this is 

what makes us different.

Throughout history people have devised systems to aid keeping 

track of  quantity. The Mesopotamians had a number system using 

base 60 as far back as 3400 BC and the Egyptian number system 

dates back to 3100 BC. The Egyptians used base 10 in their system 

and they had a special symbol for the different powers of  10, 

allowing them to count up to one million.

Here are the Egyptian symbols for the powers of  ten from 10 to one 

million.

10 100 1000 10000 100000 1 million

In Europe, Roman numbers were used before our current number 

system. One of  the most ancient systems is the Mayan system which 

was developed around 400 AD, appoximately 1000 years ahead of  
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European counterparts. The Mayans used base 20 in their system. 

The picture below illustrates some of  the numbers in the Mayan system.

1 4 6 11 179 zero 20 23

But it was in India that the number zero was fi rst introduced 

as a conceptual number and indirectly revolutionized western 

arithmetic many centuries later. Until then, western arithmetic 

used Roman numerals which made arithmetic very cumbersome. 

The Indian mathematician Brahmagupta came up 

with some rules about operations with positive 

numbers, negative numbers and zero.

Rules of Brahmagupta

A debt minus zero is a debt.

A fortune minus zero is a fortune.

Zero minus zero is a zero.

A debt subtracted from zero is a fortune.

The product of zero multiplied by a debt or fortune is zero.

The product of zero multiplied by zero is zero.

The product or quotient of two fortunes is one fortune.

The product or quotient of two debts is one fortune.

The product or quotient of a debt and a fortune is a debt.

The product or quotient of a fortune and a debt is a debt.

Investigation

Work out the following products:

34 × 11  71 × 11  23 × 11  29 × 11

What do you notice from your results? Work out some more products of  two-digit 

numbers by 11 and make a conjecture.

Does your conjecture work with the product of  three-digit numbers and 11?

What about four-digit or fi ve-digit numbers, etc...?

Explain why your conjecture always works.

Repeat the steps above for multiplication by 111 and explain your results.

1.1 Number systems and bases

In discrete mathematics we are interested only in values that vary 

discretely, as opposed to values that vary continuously. Hence, the 

focus will be on variables that belong to the integers , and subsets 

thereof, particularly the positive integers +. In this section you will 

look at different number bases and learn how to convert from one 

base to another, as well as doing some elementary arithmetic. 
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Since a very early age you have been using the base 10 system with 

the digits 0 through 9. You were taught how to understand the value 

of  a number based on a decimal system where the value of  a digit 

depends on where it is placed in the representation of  the number. 

This is illustrated in the table below.

104 103 102 101 100

2 3 0 4 7

We can think of  this number in base 10 as a polynomial in 10 with 

coeffi cients that can take values between 0 and 9 as follows:

23 047 = 2 × 104 + 3 × 103 + 0 × 102 + 4 × 101 + 7 × 100

i.e. f  (x) = 2x 4 + 3x 3 + 4x + 7 ⇒ f  (10) = 23 047

We are so accustomed to using this system that we often do our calculations 

mechanically. Most probably, the reason base 10 mathematics was 

adopted by many civilizations is because we have 10 fi ngers. 

Digitus in Latin means a  nger or a toe. In the Mayan system, all  ngers and 

toes were used, resulting in a base 20 number system, whereas Egyptians 

used only  ngers, hence the base 10 system. Native Greenlanders also used  ngers

and toes. In fact the Greenlandic word for eight translates as ‘second hand three’ 

– meaning you count the  ve  ngers of the  rst hand and three  ngers from the 

second hand. The number 14 in Greenlandic would translate directly as ‘ rst foot 

four’ – meaning all 10  ngers and 4 toes. So ‘second foot 4’ would be the number 19.

Computer systems and digital electronics use binary (base 2), 

octal (base 8) and hexadecimal (base 16) number systems for 

internal storage and the processing of  data. The binary system is 

especially useful for representing the input and output of  computer 

components and for memory storage locations that can be in only 

one of  two states, on or off. This system uses only two digits: 

1 and 0. The table below illustrates an example of  how to understand 

the value of  a binary number in denary. 

Base ten is called 

either decimal or 

denary.

24 23 22 21 20

1 0 0 1 1

Once more we can think of  the number as a polynomial in 2 

with coeffi cients that can take values 0 or 1 as follows:

10 011
2
 = 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20

= 16 + 2 + 1

= 19
10

In the core book we introduced Horner’s algorithm, also known 

as synthetic division. The table also helps us to calculate the 

number in base 10. 

2×

1
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De nition

A positive integer N in base b notation is represented by 

N = (d
n
d

n−1
d

n−2
... d

1
d

0
)

b
 where d

i  
, b ∈ +, 0 ≤ d

i
 < b. 

The value of  N in base b is given by:

N = d
n
 × b n + d

n−1
 × b n−1 + d

n−2
 × b n−2 + ... + d

1
 × b1 + d

0
 × b0

The hexadecimal system is base 16. Using the defi nition for base b

notation, a number N in hexadecimal would be represented by:

N = d
n
 × 16n + d

n−1
 × 16n−1 + d

n−2
 × 16n−2 + ... + d

1
 × 161 + d

0
 × 160

with d
i
 ∈  +, 0 ≤ d

i
 < 16

Since we do not have 16 different digits to represent the different d
i

we use letters as additional digits, so that in the hexadecimal 

system the digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

with A
16

 = 10, B
16

 = 11, C
16

 = 12, D
16

 = 13, E
16

 = 14, and F
16

 = 15.

Example 1 illustrates how to use this defi nition to fi nd the value 

of  a number from a given base to base 10.

Example 

Convert the following numbers to base 10.

a 35 072
8

c 1 101 011
2

b 4211
5

d EA21B
16

a 35 072
8
 = 3 × 84 + 5 × 83 + 0 × 82 + 7 × 81 + 2

   = 12 288 + 2560 + 56 + 2 = 14 906
10

b 4211
5
 = 4 × 53 + 2 × 52 + 1 × 51 + 1 = 556

10

c 1 101 011
2

= 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 

= 107
10

d EA21B
16

 = 14 × 164 + 10 × 163 + 2 × 162 + 1 × 161 + 11 

= 959 003
10

The number is in base 8, so use 

the defi nition with b = 8.

Use the defi nition with b = 5.

Use the defi nition with b = 2.

Use the defi nition with b = 16, 

E = 14, A = 10 and B = 11.

In the exam you will be required to work with bases only up to and including 

base 16. Remember that for bases greater than 10 the letters A, B, C…. 

represent the numbers 10, 11, 12… You should try to solve the questions in 

example 1 using synthetic division (Horner’s algorithm).

In the next example you will determine the base used in an equation 

by using a representation of  the number in terms of  powers. This is 

sometimes called a polynomial representation of  a number. 
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Usually we denote the base by b, but in the next example 

the base is called n so that you may follow the working 

using a GDC, as shown in the screenshot.

Example 

When numbers are written in base n, 442 = 4301. By writing down an appropriate 

polynomial equation, determine the value of  n

442 = 4301

⇒ (4n + 4)2 = 4n3 + 3n2 + 0n + 1 

⇒ 16n2 + 32n + 16 = 4n3 + 3n2 + 1 

⇒ 4n3 − 13n2 − 32n − 15 = 0

⇒ n = 5

5.nSolve ((4·n+4)2=4·n3+3·n2+1,n,2)

Example 2

1/99

1.1

Write down each side of  the 

equation as a polynomial in n.

Expand and simplify then solve 

for n ∈  +

You can also use a GDC. Notice 

that for the fi rst iteration we 

used 2, since that is the smallest 

base. 

Note that although –1 and 

– 
3

4
 are also solutions these 

numbers cannot be used as a 

base.

To change a decimal number into any base b you need to work 

backwards. Suppose that you want to change the number 163
10

 to 

base 3. Start by listing the powers of  3 and choose the largest power 

that is smaller than 163.

32 = 9, 33 = 27, 34 = 81, 35 = 243 

Dividing 163 by 81 you get 2 with a remainder of  1.

So 163 = 2 × 34 + 0 × 33 + 0 × 32 + 0 × 31 + 1 = 20 001
3

Another algorithm involves successive division by the base and 

noting the remainders at each stage as follows:

163 = 3 × 54 + 1

54 = 3 × 18 + 0

18 = 3 × 6 + 0

6 = 3 × 2 + 0

2 = 3 × 0 + 2 

The algorithms used for adding and multiplying in base 10 can also 

be used for adding and multiplying in base b as long as you remember 

to convert to base b at each stage. 

The remainders written from last 

to fi rst give the answer 20 001
3

An algorithm is a 

step-by-step set 

of operations that 

are to be followed 

in calculations or 

problem solving.
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To add numbers, you start by adding the digits on the far right, the 

units digits. If  the sum is less than the base you write it down. If  it 

is greater than the base then you must carry a number. To fi nd out 

what number to carry, you divide the sum by the base, write down 

the remainder and carry up the quotient. Repeat this in each place 

digit, remembering to add any carried numbers at each stage. 

Note that if  you are adding two numbers you cannot carry more 

than a 1. In that case, carry a 1 if  the sum is greater than or equal to 

the base.

The following example will illustrate the algorithm. 

372
8
 + 437

8
 = 1031

8

Method:

Start with the units digit. 

2 + 7 = 9

9 = 1 × 8 + 1 = 11
8

The sum is greater than 8 so write 1 in the units digit and carry 1:

8

1

8

372

+ 437

1

Now we have 7 + 3 + 1 = 11 = 1 × 8 + 3 = 13
8

Put 3 in for the 81 digit and carry 1:

31
8

372

+ 437
8

1

3 + 4 + 1 = 8 = 1 × 8 + 0 = 10
8

Put 0 in for the 82 digit and carry 1 over to the 83 digit:

8
1031

8

372

+ 437
8

To multiply two numbers, start by multiplying the units digit fi rst. 

If  the product is less than the base you write it down. If  it is greater 

than the base then you must carry. To fi nd out what number to carry 

you divide the product by the base, write down the remainder and 

carry up the quotient. Repeat this in each place digit but remember 

to add any carried numbers at each stage.
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The following example will illustrate the algorithm.

253
7
 × 25

7
 = 10 351

7

Method:

3 × 5 = 15 = 2 × 7 + 1 so write 1 in the units digit and carry 2:

1

253

×    25

2

5 × 5 + 2 = 27 = 3 × 7 + 6 so write 6 for the 71 digit and carry 3:

61

253

×    25

3

5 × 2 + 3 = 13 = 1 × 7 + 6 therefore write 16 for the 72 and 73 digits:

1661

253

×    25

Continuing with the algorithm of  multiplying by 20, place a 0 in the 

units digit and multiply by 2.

2 × 3 = 6 and since 6 < 7 we write it down:

1661

60

253

×    25

2 × 5 = 10 = 1 × 7 + 3 so we write 3 and carry 1:

1661

360

253

×    25

1

2 × 2 + 1 = 5 and we write 5:

1661

5360

253

×    25

The last step is to add in base 7:

 1661

+ 5360

253

×    25

10351

Therefore 253
7
 × 25

7
 = 10 351

7

Base 7 

times table
0 1 2 3 4 5 6 7

0 0

1 0 1

2 0 2 4

3 0 3 6 12

4 0 4 11 15 22

5 0 5 13 21 26 34

6 0 6 15 24 33 42 51

7 0 10 20 30 40 50 60 100
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The next example illustrates how multiplication in a different 

base can be used within exam-style questions.

Example 

Rewrite the equality (44
5
)2 = 4301

5
 with numbers in base 3.

Method I

44
5
 = 4 × 5 + 4 = 24

10
⇒ (24

10
)2 = 576

10

24 = 3 × 8 + 0

8 = 3 × 2 + 2

2 = 3 × 0 + 2

⇒ 24
10

 = 220
3

576 = 3 × 192 + 0

192 = 3 × 64 + 0

64 = 3 × 21 + 1

21 = 3 × 7 + 0

7 = 3 × 2 + 1

2 = 3 × 0 + 2

⇒ 576
10

 = 210 100
3

Therefore the equation in base 3 becomes 

(220
3
)2 = 210 100

3

Method II

44
5
 = 24

10

24 = 3 × 8 + 0

8 = 3 × 2 + 2

2 = 3 × 0 + 2

⇒ 24
10

 = 220
3

Therefore 44
5
=220

3

220

220

12100

1210

210100

3

3

3

3



Therefore in base 3, (220
3
)2 = 210 100

3

Change both sides of  the equation to base 10.

Convert 24
10

 to base 3.

Convert 576
10

 to base 3.

Convert 24
10

 to base 3.

Square 220
3

3

3

3

22

×2

121

 because 2
3
 × 2

3
 = 11

3

Computers store and handle binary digits, where each digit is called a bit. 

In order to represent hexadecimal digits we need four binary digits. 

Two hexadecimal digits together make up a byte. The hexadecimal system is 

used by programmers because each byte needs only two hexadecimal digits, 

and also hexadecimal numbers are more easily read by humans than binary 

numbers. In HTML and CSS codes, hexadecimal triplets are used to specify 

colours. Each of these triplets consists of two hexadecimal numbers. The table 

at the top of page 11 shows the numbers from 0 to 15 in denary (decimal), 

hexadecimal and binary.
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The  rst 16 digits in the Base 10 

(denary), Base 16 (hexidecimal) and 

Base 2 (binary) number systems

Octal (Base 8) is another numbering 

system, and some sources claim it 

was used by several native American tribes. 

Rather than counting  ngers, as with base 

10, the spaces in between the  ngers were 

counted.

denary hexadecimal binary

0

1

2

3

0

1

2

3

0000

0001

0010

0011

4

5

6

7

4

5

6

7

0100

0101

0110

0111

8

9

10

11

8

9

A

B

1000

1001

1010

1011

12

13

14

15

C

D

E

F

1100

1101

1110

1111

The next example shows how to prove divisibility properties.

Example 

Let N be a positive integer written in base 6. Show that N is divisible by 5 if  and only if  the 

sum of  the digits of  N is divisible by 5. 

1 2

6 1 2= × 6 + × 6 + × 6n n n

n n nN a a a 

 

2

2 1 0+ ... + × 6 + × 6 +a a a

where 0 < 6ia  for all 0 i n 

1 2

6 1 2= (1 + 5) + (1 + 5) + (1 + 5)n n n

n n nN a a a


 



2

2 1 0
+ ... + (1 + 5) + (1 + 5) +a a a

Write N
6
.

Substitute 6 = (1 + 5).
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1 2(1 + 5) = 5 + 5 + 5 + ... + 5 +
0 1 2 1

k k k kk k k k k

k k

1 2 3= 5 5 + 5 + 5 + ... + + 1
0 1 2 1

k

k k k

A

k k k k

k

  

 
        
        
        
        
  

= 5A
k
 + 1

     6 1 1 2 2
= 5 + 1 + 5 + 1 + 5 + 1

n n n n n n
N a A a A a A   

 2 2 1 01
+ ... + 5 + 1 + (5 + 1) +a A a A a

= 5( + + + ...+ +1 1 2 2 2 2 1a A a A a A a A an n n n n n

B

    A1  
)

1 2 1 0+ ( + + + ... + + )n n n

S

a a a a a 

= 5 +B S

5 5 ,S S p p   

 N B p6 = 5( + )

 5 6N

5 = 56 6N N C

 5 + = 5B S C

 S C B= 5( )

 5 S

Using Binomial expansion.

Rearrange.

Substitute 5A
k
 + 1 for (1 + 5) k 

in the expression for N
6 

Show that 5 5S N 6

Show that 5 5N S6  .

The result above can be generalized for any number written in base b. 

This is left as an exercise for you in question 10 of  Exercise 1A.

Exercise 1A

1 Convert these numbers to base 10.

 a 4578
9

b EB7F4
16

c 312 201
4

2 Convert these numbers from base 10 to the given base.

 a 82 966 to base 16 b 73 285 to base 5 c 347 to base 2

3 Convert these numbers to base 6.

a 2122
3

b C19
16

c 11 011 101
2
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4 Work out the sums in the given base.

 a 565
7
 + 2154

7
b A5

16
 + B38

16
c 110 101

2
 + 1 011 100

2

5 Work out the products in the given base.

 a 2314
5

× 43
5

b 111
2
 × 110

2
c (53

9
)2

6 When numbers are written in base b, 25 × 16 = 502. By writing down 

an appropriate polynomial equation, determine the value of  b.

7 a When numbers are written in base n, 342 = 2421. 

By writing down an appropriate polynomial equation, 

determine the value of  n. 

 b Rewrite the above equality with numbers in base 8.

8 Let N be a positive integer written in base 9. Show that N is 

divisible by 8 if  and only if  the sum of  the digits of  N in base 9 

is divisible by 8.

9 Let N be a positive integer expressed in base 10, 

i.e. 1 2
1 2 1 0= × 10 + × 10 + ... + × 10 + × 10 +n n

n nN a a a a a

 Show that N is divisible by 4 if  and only 4 divides 2a
1
 + a

0

10 Show that if  N is a positive integer written in base k, then 

(k – 1) divides N if  and only if  the sum of  the digits of  N in 

base k is a multiple of  (k – 1).

1.2 Integers, prime numbers, factors and divisors

We will now look at some basic concepts of  Number Theory 

with special emphasis on divisibility, divisors, remainders and 

greatest common divisors. 

De nition

If  a, b ∈ , a ≠ 0, we say that a divides b if  there exists c ∈  such 

that b = ac. We then say that a is a factor of  b, and b is a multiple

of  a. The notation a|b denotes that a divides b. 

i.e. a|b ⇒ b = ac where a, b, c ∈ , a ≠ 0.

Theorem 1

Let a, b, c ∈ , a ≠ 0. Then 

i a|b and a|c ⇒ a|(b + c) 

ii a|b ⇒ a|bc

iii a|b and b|c ⇒ a|c

Leopold Kronecker

(1823–1891) 

was a German 

mathematician whose 

work focused on 

Number Theory and 

Algebra. He was quite 

critical of the work 

done by Cantor and 

Weierstrass on Set 

Theory. He is famous 

for saying: “God made 

the integers, all else is 

the work of man.”
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Proof  of  Theorem 1:

i:

a|b ⇒ b = am, where m ∈ . 

a|c ⇒ c = an, where n ∈ 

Therefore b + c = am + an = a (m + n), where m + n ∈  ⇒ a|(b + c). Q.E.D. 

ii:

a|b ⇒ b = am, where m ∈ . 

⇒ bc = amc, where mc ∈  ⇒ a|bc. Q.E.D.

iii:

a|b ⇒ b = am, where m ∈ 

b|c ⇒ c = nb, where n ∈ 

⇒ c = nb = amn (substituting for b)

and since mn ∈ , we have a|c. Q.E.D.

Part iii of  theorem 1 is called the transitive property.

It is left as an exercise for you to prove the following properties: 
Two numbers having 

the same magnitude 

but different signs are 

said to be opposite 

numbers.

● a|a for all a ∈ Z, a ≠ 0.

● If  a|b and b|a, a, b ∈ Z, b ≠ 0, then a and b are equal 

or opposite.

An integer may or may not be divisible by another integer. When an 

integer is divided by another integer you always obtain a quotient and 

a remainder (though the remainder may be 0). You have been using 

this in your arithmetic calculations, possibly without realizing how 

important the division algorithm is. Some examples:

When 113 is divided by 11 the quotient is 10 and the 

remainder is 3 because 113 = 11 × 10 + 3.

When −42 is divided by 11 the quotient is −4 and the remainder 

is 2 because −42 = 11 × (−4) + 2. (Note that the remainder cannot 

be negative and if  the number is negative then the quotient is negative.)

When 104 is divided by −5 the quotient is −20 and the remainder 

is 4 because 104 = (−5) × (−20) + 4.

De nition

A relation ≤ on a set S is totally ordered if  and only if  for all a, b, c, 

in S the following hold

 either a ≤ b or b ≤ a

 a ≤ b and b ≤ a ⇒ a = b

 a ≤ b and b ≤ c ⇒ a ≤ c

A well-ordered relation on a set S is one that is totally ordered, 

and every non-empty subset of  S contains a least element.
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The Well-Ordering Principle

Every non-empty subset of  the positive integers has a least 

element. We say that the positive integers are well-ordered

It is clear that + is well-ordered because every subset of  + contains 

a least element. For example, E = {k|k = 2n, n ∈ +} is a subset of  +

It is the set of  all even positive integers with least element 2. The least 

element of  + is 1.

The set N is also well-ordered since it it has a least element of  0 and 

any subset of  N also has a least element. 

For example, S = {k| k = 5n, n ∈ +} ⇒ S ⊂ N with least element 5.

If  we consider [0, ∞[ then this is not well-ordered. Although it has a 

least element, 0, the set ]0, ∞[ ⊂ [0, ∞[ but it has no least element.

Theorem 2: The division theorem 

Let a ∈  and d ∈ +  Then there are unique integers q and r, 

0 ≤ r < d, such that a = dq + r. We call d the divisor, q the quotient 

and r the remainder.

Proof:

The proof  is divided into two parts. In the fi rst part we need to show 

that there are two integers q and r, 0 ≤ r < d, such that a = dq + r. 

You will not be required 

to prove Theorem 2 in 

the examination.

In the second part we must show that these integers are unique.

i Existence of q and r :

 If  d|a then a = nd and r = 0.

 If  a, let S = {a − kd|k ∈ , a − kd > 0}. d a means d does not 

divide a If  a > 0 and k = 0 we have a ∈ S so we know that S ≠ ∅. 

For a < 0 let k = a − 1 so that a − kd = a − (a − 1)d = a (1 − d ) + d where 

1 − d ≤ 0 since d ≥ 1. Then a − kd > 0 and once more S ≠ ∅. Hence, for all 

a ∈ , S is a non-empty subset of   + and by the Well-Ordering Principle it 

must have a least element r such that 0 < r = a − qd for some q ∈ . If  r = d

then d = a − qd ⇒ a = d (q + 1) ⇒ d|a which is a contradiction since the initial 

condition was that a. 

If  r > d we can say that r = d + c where c ∈  + and d + c = a − qd ⇒ a = d (1 + q) + c

which leads to c ∈ S and c < r. This is another contradiction since we said that r is 

the least element in S. Therefore we know that q and r exist such that r < d and 

a = qd + r. Q.E.D.

ii Uniqueness of q and r :

Suppose there exist q
1
, r

1
, q

2
, r

2
 such that q

1
d + r

1
 = a = q

2
d + r

2

Then it follows that |q
1
 − q

2
|d = |r

2
 − r

1
| < d because we know that 

0 ≤ r
1
, r

2
 < d. If  q

1 
≠ q

2
 then |q

1
 − q

2
|d > d which is a contradiction. 

Therefore q
1
 = q

2
 and hence r

1
 = r

2
. Q.E.D.
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De nition

Given that a, b ∈  + we say that d is the greatest common divisor

of  a and b, denoted by gcd(a, b) provided that:

i d|a and d|b

ii if  c|a and c|b then c ≤ d

One way of  fi nding the greatest common divisor of  two positive integers 

is to fi rst list all the divisors of  each number, collect all the common 

divisors and then identify the greatest common divisor. For example: 

Let a = 12 and b = 30. Let D
12

and D
30

 be the sets of  the divisors of  

12 and 30 respectively. Then:

D
12

 = {1, 2, 3, 4, 6, 12}

D
30

 = {1, 2, 3, 5, 6, 10, 15, 30}

The common divisors are 1, 2, 3, 6 and so the greatest common divisor is 6.

Therefore gcd(12, 30) = 6.

Moreover, we can use the Euclidean algorithm to fi nd the greatest 

common divisor of  two numbers a and b where a, b ∈ +, b < a. 

We divide the bigger of  the two numbers, a, by the smaller one, b, 

to fi nd the remainder r
1
 where r

1
 < b. Then we divide b by r

1
 to 

obtain a remainder r
2
. We then divide r

1
 by r

2
 to obtain a remainder r

3
. 

We continue with this process until we reach r
k
 = 0. Then r

k−1
 = gcd(a, b).

The following example will illustrate the Euclidean algorithm.

Example 

Find the greatest common divisor of  256 and 56.

256 = 56 × 4 + 32 

56 = 32 × 1 + 24 

32 = 24 × 1 + 8

 24 = 8 × 3 + 0 

Therefore gcd(258, 56) = 8

a = 256, b = 56 and r
1
 = 32 

r
2
 = 24

r
3
 = 8

r
4
 = 0

r
4
 = 0 ⇒ r

3
 = gcd(a, b)
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Theorem 3

Let a, b ∈ +, a > b, d = gcd(a, b). Then we can fi nd m, n ∈ 

such that d = ma + nb

Proof:

Using the Euclidean algorithm we have:

a = b × d
1
 + r

1

b = r
1
 × d

2
 + r

2

r
1
 = r

2
 × d

3
 + r

3

r
2
 = r

3
 × d

4
 + r

4

r
k−3

 = r
k−2

 × d
k−1

 + r
k−1

r
k−2

 = r
k−1

 × d
k
 + 0 

Working our way up this algorithm we obtain 

gcd(a, b) = r
k−1

= r
k−3

 − r
k−2

 × d
k−1

= r
k−3

 − (r
k−4

 − r
k−3

 × d
k−2

) × d
k−1

substituting for r
k−2

 from 

the previous line.

= r
k−3

(1 + d
k−2

d
k−1

) − r
k−4

 × d
k−1

rearranging and taking r
k−3

as a common factor.

= ma + nb We continue going backwards in this way until 
we obtain an expression in terms of  a and b and 

since r
i
 , d

i
 ∈ Z, m and n are integers. Q.E.D.

The next example illustrates how this theorem is used. 

Example 

Use the Euclidean algorithm to fi nd the greatest common divisor of  28 and 36. 

Hence fi nd m, n ∈Z such that gcd(28, 36) = 28m + 36n.

36 = 28 × 1 + 8

28 = 8 × 3 + 4

8 = 4 × 2 + 0

Therefore gcd(28, 36) = 4.

4 = 28 – 8 × 3

= 28 – 3(36 – 28 × 1)

= 4 × 28 – 3 × 36

Therefore m = 4 and n = –3.

Use the Euclidean Algorithm.

Work backwards using penultimate line of  

the algorithm, substituting for 8 from the 

previous line.

Rearrange to obtain the required equation.
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In Example 7 you will see how this algorithm also works for larger numbers.

Example 

Use the Euclidean algorithm to fi nd the greatest common divisor of  721 and 448.

Hence fi nd m, n ∈ Z such that gcd(721, 448) = 721m + 448n.

721 = 448 × 1 + 273

448 = 273 × 1 + 175

273 = 175 × 1 + 98

175 = 98 × 1 + 77

98 = 77 × 1 + 21

77 = 21 × 3 + 14

21 = 14 × 1 + 7

14 = 7 × 2 + 0 

Therefore gcd(721, 448) = 7.

gcd(721, 448) = 7

    = 21 − 14 × 1 

    = 21 − (77 − 21 × 3) 

    = 4 × 21 − 77 

    = 4(98 − 77) − 77 

    = 4 × 98 − 5 × 77 

    = 4 × 98 − 5(175 − 98)

    = 9 × 98 − 5 × 175

    = 9(273 − 175) − 5 × 175

    = 9 × 273 − 14 × 175

    = 9 × 273 − 14(448 − 273)

    = 23 × 273 − 14 × 448

    = 23(721 − 448) − 14 × 448

    = 23 × 721 − 37 × 448 

Therefore m = 23 and n = −37.

Use the Euclidean Algorithm. 

Using penultimate line of  Algorithm, 

substituting for 14 from previous line.

Rearrange.

Substitute for 21 from previous line.

Rearrange etc...
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Here is another example to help you understand how the algorithm works.

Example 

Show that gcd(a – kb, b) = gcd(a, b) where a, b, k ∈ Z+, a > b

Let gcd(a, b) = d and gcd(a – kb, b) = D.

gcd(a, b) = d ⇒ d|a and d|b 

d|a ⇒ a = md

 d|b ⇒ b = nd ⇒ bk = knd

∴ a − bk = (m − kn)d

⇒ d|a − bk

So d is a common divisor of  a – kb and b. But 

since D is the gcd(a – kb, b) we can say that 

d ≤ D.

Now gcd(a – kb, b) = D ⇒ D|a − kb and D|b

D|a − kb ⇒ a − kb = pD

D|b ⇒ b = qD ⇒ kb = kqD

∴ a = ( p + kq)D

⇒ D|a

Therefore D is a common divisor of  a and b.

But since gcd(a, b) = d we can say that D ≤ d

Combining the two results we obtain d ≤ D and 

D ≤ d

⇒ d = D ⇒ gcd(a – kb, b) = gcd(a, b).

Subtracting the two equations.

Adding the two equations.

Exercise 1B

1 Find the gcd of  each pair of  numbers.

 a 2406 and 654 b 728 and 548

 c 1752 and 672 d 2595 and 1014

2 Using the results of  question 1, fi nd integers m and n satisfying 

these equations.

 a 2406m + 654n = gcd(2406, 654)

 b 728m + 548n = gcd(728, 548)

 c 1752m + 672n = gcd(1752, 672)

 d 2595m + 1014n = gcd(2595, 1014)

EXAM-STYLE QUESTION

3 a Show that for a, b ∈ Z+ and m, n ∈ Z, if  ma + nb = 1 ⇒ gcd(a, b) = 1.

 b  Hence show that if  gcd(a, b) = 1 and gcd(a, c) = 1, 

then gcd(a, bc) = 1.
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Diophantus of Alexandria

Diophantus is often referred to as “the father of  algebra” due to 

his work on the solution of  algebraic equations found in his work 

Arithmetica. There is very little known about his life; for example, it 

is not known exactly when he lived despite a number of  speculations 

and estimations based on references to his writings. Diophantus dealt 

with positive rational solutions concerning linear and quadratic 

equations. These equations can be represented by P (x, y, z…) = 0, 

e.g. 2x + 3y − 11 = 0 or 5x2 − 3y2 − 4x + 7y − 13 = 0 

Linear Diophantine equations are sometimes referred to as 

fi rst-order Diophantine equations.

The fi rst example, 2x + 3y − 11 = 0, is such an equation.

A Diophantine equation is one such equation for which only integer 

solutions are allowed.

Investigation – Diophantus Riddle

In this investigation you are asked to fi nd a solution to a 

Diophantus Riddle which is presented in verse as follows:

Here lies Diophantus, the wonder behold

Through art algebraic, the stone tells how old

God gave him his boyhood one-sixth of  his life, 

One-twelfth more as youth while whiskers grew rife

And then yet one-seventh ere marriage begun;

In fi ve years there came a bouncing new son.

Alas, this dear child of  master and sage, 

Attained only half  of  his father’s age,

When chill fate took him. An event full of  tears –

Heartbroken, his father lived just four more years.

 Translate the poem into mathematical statements.

 Let n ∈ Z+ be the age at which Diophantus died and let m ∈ Z+ be 

the number of  years lived by his son. Use the statements in part

to form a pair of  simultaneous equations.

 Solve the equations to fi nd how old Diophantus was when he died.
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Linear Diophantine equations

De nition

A linear Diophantine equation in two variables is an equation of  

the form ax + by = c, where a, b, c ∈ Z and which has integer 

solutions x and y

A simple linear equation in two variables 3x + 0y = 6 is a linear 

Diophantine equation with infi nitely many solutions x = 2, y = n,

n ∈ Z. Note that the solution of  a Diophantine equation is made up 

of  two parts.

David Hilbert, a German mathematician from the University of Göttingen, 

presented 23 open mathematical questions at the International 

Congress of Mathematics in Sorbonne in 1900. Hilbert was convinced that 

all 23 problems would be solved. In fact, an engraving on his tombstone 

reads “We must know! We will know!” The problems on Hilbert’s list have 

received remarkable attention since they were  rst presented, and four of 

them remain unsolved. The tenth problem in Hilbert’s list of problems at the 

turn of the twentieth century is about  nding an algorithm for determining 

solutions to general Diophantine equations. In 1970 Yuri Matiyasevich proved 

that it is not possible to  nd a general integer solution to all Diophantine 

equations. An algorithm does exist for the solution of linear Diophantine 

equations and you will be introduced to this algorithm in this section.

Theorem 4

A linear Diophantine equation ax + by = c, where a, b, c ∈ Z, 

has integer solutions x and y ∈ Z if  and only if gcd(a, b)|c

Proof:

⇒:

Let x
1
, y

1
 ∈ Z be solutions to the equation ⇒ ax

1
 + by

1
 = c

By defi nition, gcd(a, b)|a and gcd(a, b)|b.

⇒ gcd(a, b)|x
1
a + y

1
b ⇒ gcd(a, b)|c (using Theorem 1)

⇐:

Let gcd(a, b) = d

Then gcd(a, b)|c ⇒ d|c ⇒ c = md, m ∈ Z

But we know that there exist some x
1
, y

1
 ∈ Z such that ax

1
 + by

1
 = d

(using Theorem 3)

⇒ c = m (ax
1
 + by

1
) ⇒ c = a (mx

1
) + b (my

1
)

Which means that the integers x = mx
1
 and y = my

1
 are solutions 

to the equation. Q.E.D.
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Corollary

Given the linear Diophantine equation ax + by = c, where a, b, c ∈ Z, 

if  gcd(a, b)|c there are no integer solutions to the equation.

Proof:

Suppose gcd(a, b) = d and c

Let x
1
, y

1
 ∈ Z be solutions to the equation.

Then since d|a and d|b it follows by theorem 3 that d|ax
1

+ by
1
 = c

which is a contradiction.

Hence, if  gcd(a, b)|c then there are no integer solutions to the equation. Q.E.D.

Before we move on to fi nd an algorithm for the general solution 

of  a linear diophantine equation in two variables we need to prove 

the following theorem about greatest common divisors.

Theorem 5

If  gcd(a, b) = d, then gcd ,
a

d

b

d









  1

Proof:

Let gcd(a, b) = d ⇒ a = md and b = nd, and m, n are relatively prime. 

If  m, n are not relatively prime then d is not the greatest common 

divisor of  a and b

gcd , gcd , gcd( , )
a

d

b

d

md

d

nd

d
m n



















   1 Q.E.D.

Theorem 6

Given ax + by = c, where gcd(a, b)|c, and x
0 
, y

0
 is a particular 

solution then 0 0, ,
b a

d d
x k y k k

    
    

    
    is a complete set of  

solutions of  the given Diophantine equation.

Proof:

The proof  is split into two parts. First we must show that any 

pair of  the form x k y k
b

d

a

d
0 0 



















, , k ∈ Z is a solution. 

Then we must show that x k y k k
b

d

a

d
0 0  





























,   gives 

the whole solution set.

In order to show that x k y k
b

d

a

d
0 0 



















, , k ∈ Z is a solution we need 

to substitute for x and y in the LHS of  the given equation.
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In other words, a x k b y k
b

d

a

d
0 0  









































= ax a k by b k
b

d

a

d
0 0  





















   


















ax by a k b k

b

d

a

d
0 0

   = c + 0 = c

Therefore the pair x k y k
b

d

a

d
0 0 



















,  does give a solution to the 

given equation.

To show that the solution set is complete let us take a general solution x, y

Then ax
0
 + by

0
 = c = ax + by

⇒ a (x − x
0
) = −b ( y − y

0
)

    
a

d

b

d
x x y y( ) ( )0 0

a

d

a

d

b

d
LHS y y  ( )0

But by Theorem 5 gcd ,
a

d

b

d









  1

a

d
 |

b

d

Therefore 
a

d

a

d
y y y y k     ( ) ( )0 0

  








y y k

a

d
0

Now substitute for y − y
0
 into 

a

d

b

d
x x y y( ) ( )   0 0

   










a

d

b

d

a

d
x x k( )0

   








x x k

b

a

a

d
0   









x x k

b

d
0

Hence we have shown that x k y k
b

d

a

d
0 0 



















,  where k ∈ Z give a 

complete infi nite solution set of  the linear Diophantine equation 

ax + by = c where gcd(a, b)|c. Q.E.D.

Although it is sometimes easy to fi nd the gdc of  two numbers by 

fi nding their factors, we use the Euclidean algorithm for fi nding 

the particular solution of  a linear Diophantine equation.

The following examples show how you can use this result to 

fi nd the general solutions of  linear Diophantine equations.

Since x
0
, y

0
 are particular 

solutions it follows that 

ax
0
 + by

0 
= c. 
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Example 

Determine which of  the following Diophantine equations have solutions. 

If  an equation has a solution, fi nd i a particular solution, and ii a general solution.

a 3x + 4y = 1 b 2x + 5y = 12

c 3x + 6y = 7 d 15x + 12y = 105

a gcd(3, 4) = 1 

The equation has a solution.

1 = 4 − 1 × 3 = (−1) × 3 + (1) × 4

Particular solution is x
0
 = −1, y

0
 = 1.

The complete solution is therefore

x = −1 + 4k, y = 1 − 3k, k ∈ Z

b

Method I

gcd(5, 2) = 1

This results in

1 = 5 − 2 × 2 = (−2) × 2 + 1 × 5

So, 12 = (−24) × 2 + 12 × 5, 

giving the particular solution:

x
0
 = −24, y

0
 = 12. 

The complete solution is therefore

x = −24 + 5k, y = 12 − 2k, k ∈ Z

Method II

By inspection we note that a particular 

solution is x
0
 = 1, y

0
 = 2.

The complete solution is therefore 

x = 1 + 5k, y = 2 – 2k, k ∈ Z

c 3x + 6y = 7

gcd(3, 6) = 3 and the equation does not 

have a solution.

d 15x + 12y = 105

15 = 12 × 1 + 3

12 = 3 × 1 + 0 

gcd(15, 12) = 3 and 3|105, 

so a solution exists.

3 = 15 × 1 + 12 × (−1)

105 = 15 × 35 + 12 × (−35), giving a 

particular solution x
0
 = 35, y

0
 = −35 

The complete solution is therefore:

x = 35 + 4k, y = −35 − 5k, k ∈ Z

Since the RHS is 1 and gcd(3, 4) = 1.

Compare with given equation to fi nd 

particular solution.

Applying the formulae

x x k y y k
b

d

a

d
   



















0 0,

Since both 5 and 2 are prime numbers.

The equation has a solution since gcd (5, 2) = 1.

Multiply by 12.

Compare with given equation to fi nd 

particular solution.

Applying the formulae

x x k y y k
b

d

a

d
   



















0 0,

When numbers are small it is easier to fi nd 

a particular solution by inspection.

You can check that this general solution is 

equivalent to the general solution obtained 

using the algorithm in Method I.

7 is not a multiple of  3. 

Find the gcd(15, 12) using the Euclidean 

algorithm.

Check whether 105 is a multiple of  gcd(15, 12).

Work backwards and multiply by 35.

Compare with the given equation. 

Applying the formulae

   
   
   

   0 0,
b a

d d
x x k y y k
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Diophantine equations are also used to fi nd solutions of  some 

real-life problems. The next example illustrates how to do this. 

Example 

As Beppe prepares for his Mathematics HL exam he fi nds that he can solve a short 

response question in 5 minutes but it takes him 18 minutes to solve a long response 

question. What combination of  complete questions can he answer if  he works 

continuously for 96 minutes without losing any time?

5x + 18y = 96

18 = 3 × 5 + 3

5 = 1 × 3 + 2

3 = 1 × 2 + 1

Since gcd(18, 5) = 1 the equation has a 

solution.

1 = 3 − 2

= 3 − (5 − 1 × 3)

= 2 × 3 − 5

= 2 × (18 − 3 × 5) − 5

= 5 × (−7) + 2 × 18

96 = 5 × (−672) + 18 × 192 

Particular solution is 

x
0
 = −672, y

0
 = 192 

General solution:

x = −672 + 18k, y = 192 − 5k, k ∈ Z

Now we must apply the conditions defi ned 

by the question:

0 ≤ − 672 + 18k < 20 ⇒ 37 < k ≤ 39 

0 ≤ 192 − 5k < 6 ⇒ 38 ≥ k > 37

Therefore 

k = 38

⇒ x = − 672 + 18 × 38 = 12

y = 192 − 5 × 38 = 2 

So Beppe can solve 12 short response and 

2 long response questions without wasting 

any time.

Write the information algebraically. 

Find gcd(18, 5).

Working backwards.

Multiply by 96.

Applying the formulae

x x k y y k
b

d

a

d
   



















0 0,

Beppe might work only on long response 

questions, or only on short response questions. 

In 96 minutes he would respond to at most 19 

full short questions or at least 5 full long 

response questions. Solving these inequalities 

and substituting to fi nd x and y we obtain the 

combination of  possible complete questions that 

Beppe can answer in 96 minutes.
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Exercise 1C

In questions 1 to 10, determine which of  the linear Diophantine 

equations have a solution. If  a solution exists fi nd: 

i a particular solution

ii a general solution.

1 5x + 3y = 1 2 184x + 76y = 1 

3 3x + 8y = 15 4 6x + 8y = 11 

5 14x + 21y = 28 6 90x + 15y = 128 

7 90x + 15y = 135 8 125x + 60y = 200

9 1769x + 238y = 3000  10 2311x + 1137y = 1543 

  Let c ∈ Z+, 10 < c < 20. Determine the values of  c for which the 

Diophantine equation 84 x + 990y = c has no solutions. 

Find the general solutions for the other values of  c

12  Gino collected € 100 in funds towards an animal shelter where 

he carries out a CAS project. He decided to spend this money 

on treats for dogs and cats. A bag of  dog treats costs € 16 and 

a bag of  cat treats costs € 12. What combinations of  dog treats 

and cat treats can he buy if  he spends all the money collected?

Prime Numbers

De nition

A positive integer p greater than 1 is said to be prime if  the only 

positive factors of  p are 1 and p itself. A positive integer greater 

than 1 which is not prime is said to be composite

 The number 1 is 

not a prime 

number because it is 

a very special number 

forming the building 

block of all positive 

integers. It is the only 

number that leaves a 

number unchanged 

upon multiplication by 

it. It is the only 

positive integer with 

only one positive 

divisor and it is the 

only number that 

remains unchanged 

when raised to any 

power. 

The integer 13 is prime since it can be divided by only 1 and 13.

6 is not a prime number since 2|6 and 3|6, therefore 2 and 3 are 

factors of  6.

The integer 2 is the smallest, and the only even, prime number.

The sieve of Eratosthenes is an ancient 

iterative algorithm for  nding prime 

numbers. To this day it is one of the most 

ef cient ways for  nding smaller prime 

numbers. Although a number of interesting 

patterns emerge when shading in the 

non-primes, to this date no pattern has been 

found for the primes themselves. 

100999897969594939291

90898887868584838281

80797877767574737271

70696867666564636261

60595857565554535251

50494847464544434241

40393837363534333231

30292827262524232221

20191817161514131211

1098765432
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Theorem 7

If  n is a composite positive integer, then n has a factor less than or 

equal to n . 

Proof:

Given that n is composite there must be a, b ∈ Z+, such that

1 < a ≤ b < n, which are factors of  n. In other words,

a ≤ b ⇒ a2 ≤ ab = n ⇒ a ≤ n Q.E.D.

This theorem provides us with another way of  fi nding prime 

numbers as demostrated by the next example.

Example 

Determine which of  these are prime numbers.

a 101 b 247 c 163

a 101 11

101 is prime since none of  the numbers 

2, 3, 5, 7 are factors of  101.

b 247 16

 13|247 since 13 × 19 = 247 

 Therefore 247 is not a prime number.

c 163 13

None of  the numbers 2, 3, 5, 7, 11 are 

factors of  163. Therefore 163 is a prime 

number.

The prime numbers less than 11 are 2, 3, 5, 7.

Check for divisibility by the prime numbers less 

than 16.

Check for divisibility by the prime numbers less 

than 13.

In Hilbert’s list of problems at the turn of the 20th century, 

L X AA

AJAF

AD AE

AX

AIAHK

AC

AB
I

problem 8 is about prime numbers and their distribution, 

which gave birth to the Riemann Hypothesis, named after 

another famous German mathematician, Bernhard Riemann. 

An intriguing question that to this day remains unanswered 

asks whether we can  nd a formula that generates prime 

numbers. Riemann attacked this problem from a completely 

new perspective and began to  nd some patterns in the elusive 

and chaotic distribution of the primes. His prediction about the 

distribution of the primes is known as the Riemann Hypothesis 

and to this day it has not been proved. In fact, a solution to this 

hypothesis would have great implications on the modern world. 

Although one might think that the distribution of the primes is 

simply a mathematical challenge for mathematicians, prime numbers play a central role in e-commerce and 

trading on the internet by providing a secure system known as RSA. The security of this system depends on 

the elusive nature of prime numbers.

The Clay Mathematics Institute is offering $1 million to any individual or group that can solve the 

Riemann Hypothesis. The diagram here is a suggested proof of this hypothesis, found on: 

http://blog.fora.tv/2014/05/beauty-in-numbers-solving-the-unsolvable-riemann-hypothesis
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De nition

Two integers a and b are said to be relatively prime or co-prime if  

and only if  gcd(a, b) = 1.

Example 

Use the Euclidean algorithm to show that 17 and 22 are relatively prime. 

Hence fi nd integers m and n such that 17m + 22n = 1. 

22 = 17 × 1 + 5

17 = 5 × 3 + 2

5 = 2 × 2 + 1

2 = 2 × 1 + 0 

Therefore gcd(17, 22) = 1.

Using the above:

1 = 5 − 2 × 2

= 5 − 2(17 − 5 × 3)

= 5 × 7 − 17 × 2

= 7(22 − 17) − 17 × 2

= 7 × 22 − 9 × 17 

Therefore m = −9 and n = 7.

Use the Euclidean algorithm to fi nd the 

gcd(22, 17).

Work backwards from the Euclidean algorithm to 

fi nd m and n.

The positive integers can be categorized into three distinct sets:

● Prime numbers, which are those numbers that can be 

divided by only 1 or themselves.

● Composite numbers, which are numbers that can be written as 

a product of  smaller prime numbers.

● The number 1 which is neither prime nor composite.

The following theorem was proved by the Greek mathematician 

Euclid. It is a very simple but elegant proof  by contradiction.

Theorem 8 (Euclid’s statement):

There are infi nitely many prime numbers.

Proof:

Assume that there is a fi nite number of  prime numbers. We can 

then list them as follows: p
1
 , p

2
 , p

3
 , ..., p

n
 where p

n
is the largest 

prime number.

Now construct a new integer m = p
1
 × p

2
 × p

3
 × ... × p

n
 + 1.
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This new number cannot be prime because m > p
n
 and we said that 

p
n 
is the largest prime number.

If  m is divided by any of  the prime numbers p
1
 , p

2
 , p

3
 , ..., p

n
it will 

leave a remainder of  1. So either m is prime or it is divisible by 

another prime number which is not one of  the list p
1
 , p

2
 , p

3
 , ..., p

n

Hence by contradiction there must be an infi nite number 

of  primes. Q.E.D.

Investigation – Mersenne primes and perfect numbers

Mersenne primes are prime numbers that can be written in the form 2n − 1. They are 

named after the 17th century French mathematician Marin Mersenne. Not all numbers 

of  this form produce prime numbers and the smallest non-prime Mersenne number 

is 211 − 1.

A perfect number is a positive integer that is equal to the sum of  its positive divisors, 

excluding the number itself. The smallest perfect number is 6 = 1 + 2 + 3. 

Copy and complete the following table:

n 2
0

k

k

n



 2n +1 − 1 Prime 2 2
0

n k

k

n




 Perfect Number

1 1 + 2 = 3 22 − 1 = 3 Yes 2 × 3 = 6 1 + 2 + 3 = 6

2 1 + 2 + 4 = 7 Yes 4 × 7 = 28 1 + 2 + 4 + 7 + 14 = 28

3 1 + 2 + 4 + 8 = 15 No

4

5

Use your results to make conjectures about 2
0

k

k

n



 .

Use mathematical induction to prove your conjecture.

Make a conjecture connecting Mersenne primes and perfect numbers.

Exercise 1D

1 Explaining your method fully, determine whether or not 493 is a 

prime number.

2 Write 19 152 as a product of  primes.

3 Use the Euclidean algorithm to show that 250 and 111 are 

relatively prime. Hence fi nd integers m and n such that 

250m + 111n = 1.
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4  If  a and b are relatively prime and a > b, prove that 

gcd(a − b, a + b) is either 1 or 2.

5 Use the Euclidean algorithm to show that for n ∈ Z+, the positive 

integers 5n + 3 and 7n + 4 are relatively prime.

1.3 Strong mathematical induction

Before we continue our work with prime numbers we need to look 

at a new method of  proof. In the core syllabus, you were introduced 

to proving statements using mathematical induction, sometimes 

referred to as weak mathematical induction. We will now take 

this a step further by looking at strong mathematical induction. 

Essentially the difference between the two methods is in the 

inductive step.

In weak induction, the format of  a proof  is as follows:

● State the claim that is being asserted P
n
. 

● Prove that the claim is true for an initial value of  n, 

e.g. when n = 1 (n does not necessarily have to be 1).

● Assume that the claim is true for some n = k, k ≥ 1. 

(This is the inductive step.)

● Show that if  this assumption is true, the statement is also true 

for n = k + 1.

● Make a fi nal statement to show that through the inductive 

process the statement is true for all values of  n.

In strong induction the same format is used, however the inductive 

step changes to the following:

● Assume that the claim is true for all i, such that 1 ≤ i ≤ k. 

So the difference is in the assumption that you make in the inductive 

step. The terms “weak” and “strong” can be confusing. The names do 

not mean that all the proofs done using weak induction are weaker 

proofs. It means that we proved the claim going one step at a time 

starting from the initial step. In strong induction the assumptions in the 

inductive step appear to be more demanding than the assumption in 

the weak case. Often the base case for strong induction involves more 

than just n = 1.

The next example illustrates how strong induction can be used to 

prove that every positive integer greater than 1 can be written in 

binary form.
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Example 

Show that every positive integer n can be expressed in the form:
 

 

1 2 0
1 2 0= 2 + 2 + 2 + ... + 2r r r

r r rn a a a a

Proof:

P n a a a an r
r

r
r

r
r: = 2 + 2 + 2 + ... + 21

1
2

2
0

0

When n = 1, 1 = 20

Assume that P
n
 is true for all 1 i k 

When n = k + 1 then it can be even or it can 

be odd.

If  k + 1 is even, then 
+ 1

2

k
 is an integer which is 

less than k and by the inductive step it may be 

written as 

k
a a a ar

r
r

r
r

r+ 1

2
= 2 + 2 + 2 + ... + 21

1
2

2
0

0

 


+1 1
1 2 0+ 1 = 2 + 2 + 2 + ... + 2r r r

r r rk a a a a

If  k + 1 is odd then 
( + 1) 1

2

k
 is an integer which 

is less than k and by the inductive step it may be 

written as 

k
a a a ar

r

r

r

r

r

2
2 2 2 21

1

2

2

0

0
    







 ...

     


 

k a a a ar

r

r

r

r

r2 2 2 21

1 2

1

0...

1 1

1 2 01 2 2 2 ... 2 1r r r

r r rk a a a a 

 
       

i.e. 1 1 0

1 2 01 2 2 2 ... 2 2r r r

r r rk a a a a 

 
      

Since P
1
 is true and it was shown that given P

i
 is 

true for all 1 ≤ i ≤ k, P
k+1

 is also true, it follows by 

the principle of  strong induction that P
n
 is true for 

all 1,n n 
  .

State the claim you want to prove.

Prove that the claim is true for the fi rst 

positive integer. 

Make the assumption (inductive step).

Prove that the statement is true for n = k.

The next example shows the proof  of  a statement that is true 

for all integers greater than 12, which is not intuitively obvious.
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Example 

Show that n = 4p + 5q for all p, q ∈ Z+, n ≥ 12, n ∈ Z. 

Proof:

P
n 
: n = 4p + 5q, p, q ∈Z+, n ≥ 12, n ∈Z

12 = 3 × 4 + 0 × 5

13 = 2 × 4 + 1 × 5

14 = 1 × 4 + 2 × 5

15 = 0 × 4 + 3 × 5

16 = 4 × 4 + 0 × 5

Assume that P
i
 is true for all 15 ≤ i ≤ k. 

When n = k + 1,

k + 1 = (k − 4) + 5 

 = 4p + 5q + 5

 = 4p + 5(q + 1) 

Since P
12

, P
13

, P
14

, P
15

, P
16

 are true, and it was 

shown that given P
i
 is true for all

12 ≤ i ≤ k, P
k+1

 is also true, it follows by

the principle of  strong induction that

P
n
 is true for all n ≥ 12, n ∈Z+

State the claim that you want to prove.

The initial step requires that we prove 

the result for fi ve consecutive integers 

greater than or equal to 12.

Inductive step.

Rewrite k + 1 in terms of  an integer less 

than k, e.g. ( k – 4 ) which can be written 

as 4p + 5q. 

Strong induction is used for proving recursive relations and inequalities. 

The following example uses strong induction to prove an inequality.

Example 

Show that if  u
n
 = u

n−1
 + u

n−2
 with u

1
 = 1 and u

2
 = 2, then for all n ∈Z+ u

n
 < 2n

Proof:

P
n
: u

n
 < 2n for all n ∈Z+

u
1
 = 1 < 21

u
2
 = 2 < 4 = 22

Therefore P
1
 and P

2
 are true.

Assume that P
i
 is true for all 1 ≤ i ≤ k. 

When n = k + 1 

u
k +1

 = u
k
 + u

k−1

< 2k + 2k−1

< 2k + 2k

⇒ u
k+1

 < 2 × 2k = 2k+1

Since P
1
, P

2
 are true, and it was shown that given 

P
i
 is true for all 1 ≤ i ≤ k then P

k+1
 is also true, it 

follows by the principle of  strong induction that P
n

is true for all n ∈Z+

State the claim you want to prove.

Prove initial conditions hold.

Inductive step.

In chapter 3 you will be studying 

recurrence relations in detail and 

you will encounter more proofs 

using strong induction.
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Exercise 1E

1 Show that n = 3p + 8q for all p, q ∈ Z+, n ≥ 14, n ∈ Z

2 Show that n = 3x + 5y for all x, y ∈ Z+, n > 7, n ∈ Z+

3 Prove that 2! × 4! × 6! × ... × (2n)! ≥ ((n + 1)!)n

4 a Prove that n2 ≥ 2n +1 for all n ≥ 3, n ∈Z+

b Hence prove that 2n ≥ n2 for all n ≥ 4, n ∈Z+

5  Consider the sequence defi ned by T
1
 = T

2
 = 2 and T

n
 = T

n−1
 + T

n−2

for n ≥ 3  Prove that T
n
 ≤ 2n for all n ∈Z+

1.4  The Fundamental Theorem of Arithmetic and 
least common multiples

In this section you will see why prime numbers are sometimes 

called the building blocks of  positive integers. Having defi ned 

prime numbers and composite numbers we shall start by proving 

a very important result in the next theorem.

Theorem 9

If  p is a prime number and a
1 
, a

2 
, a

3 
, a

4 
, ..., a

n
∈Z + such that 

p|(a
1
 × a

2
 × a

3
 × a

4
 × ... × a

n
), then p|a

i
 for some a

i
where 1 ≤ i ≤ n

Proof:

Using the principle of  mathematical induction: 

P
n
: p|(a

1
 × a

2
 × a

3
 × a

4
 × ... × a

n
) ⇒ p|a

i
 for some a

i
where 1 ≤ i ≤ n. 

When n = 1 it becomes obvious from the statement that p|a
1

When n = 2 we are given that p|a
1
a

2 The result for n = 2 is 

referred to as Euclid’s 

Lemma.
Suppose that p does not divide a

1
, then since p is a prime number 

we know that p and a
1
 are relatively prime, i.e. gcd( p, a

1
) = 1.

Using Theorem 3, gcd( p, a
1
) = 1 ⇒1 = mp + na

1
where m, n ∈Z

Now a
2
 = 1 × a

2

 = (mp + na
1
) × a

2

 = mpa
2
 + na

1
a

2
  (since p|a

1
a

2
⇒ a

1
a

2
 = kp, k ∈Z)

 = p (ma
2
 + k) 

Therefore p|a
2

Assume that p|(a
1
 × a

2
 × a

3
 × a

4
 × ... × a

n
) ⇒ p|a

i
 for some a

i
where 1 ≤ i ≤ k

When n = k + 1 we have p|a
1
a

2
a

3
a

4
...a

k
a

k +1

It is important to 

remember that this 

theorem only holds for 

a prime number p. 

If p is replaced by 

any positive integer 

the theorem does 

not hold. For example 

6|30 and 30 = 2 × 15 

but 6 2 and 6 15.
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Now let a
1
a

2
a

3
a

4
...a

k
 = A

Then we have p|Aa
k+1

If  p|A then by assumption p|a
i
 for some a

i
where 1 ≤ i ≤ k

If  p does not divide A then by result in the basic step for n = 2, p|a
k+1

Therefore we can say that p|a
i
 for some a

i
where 1 ≤ i ≤ k + 1 and 

P
k+1

 is true.

Since we proved that P
1
 and P

2
 are true and we showed that if  P

k
 is 

true then P
k+1

 is also true, it follows by the principle of  mathematical 

induction that P
n
 is true for all n ∈ Z+. Q.E.D.

Theorem 10:  The Fundamental Theorem of Arithmetic

Every positive integer n greater than 1 can be written uniquely

as a product of  primes written in ascending order, i.e. 
   

   
31 2

1 2 3, 1 ... ... , wherei m

i m in n n p p p p p p  is a prime 

number for all 1 ≤ i ≤ m, p
1
 < p

2
 < p

3
 < ... < p

m
 and α

i
∈N

Proof:

First we need to prove the result that any positive integer can be factorized 

into prime numbers. We shall use strong induction to prove this.
   


31 2

1 2 3: ... ...i m

n i mP n p p p p p , where p
i
is prime, n ∈ Z+, n > 1. 

2 is a prime number therefore it is a prime factorization of  itself.

Therefore P
2
 is true.

3 is a prime number therefore it is a prime factorization of  itself.

Therefore P
3
 is true.

4 is not a prime number, but 4 = 22 which is a prime factorization.

Therefore P
4
 is true.

Assume that for all i ∈ Z+, 2 ≤ i ≤ k we can write 

   
 31 2

1 2 3 ... ... where  is prime for all i m

i m ji p p p p p p j .

If  k + 1 is a prime number then it is a prime factorization of  itself.

If  k + 1 is not a prime number then it is composite, and there must 

be two integers x, y ∈ Z+, 1 < x < k + 1 and 1 < y < k + 1

such that k + 1 = xy.

But using the inductive step on x and y we can write 

x p p p p y p p p p pn i n
n i n 1 2 3 1 2 3

1 2 3 1 2 3        . . . . . . . . . and  . 

Which means that k xy p p p pn
n n      1 1 2 3

1 1 2 2 3 3       . . . .

Since ,  it follows that i i i i       for all 1 i n  .

Therefore P
k+1

 is true.
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Since P
2
, P

3
and P

4
 are true and it was shown that given P

i
 is true for 

all 2 ≤ i ≤ k, P
k+1

 is also true, it follows by the principle of  strong 

induction that P
n
 is true for all n ∈ Z+, n > 1.

Now we need to prove uniqueness.

Assume that there is one number N for which the theorem is false, i.e.

N p p p p pi n
i n 1 2 3

1 2 3    . . . . . .  and β β ββ β= 31 2

1 2 3 . . . . . .i n

i nN p p p p p  where 

p
i
’s are prime numbers not necessarily distinct and α

i 
, β

i
 ∈ N

p p p p p pn n

nn

1 2 1 2
1 2 1 2           . . . . . .

       p p p p p pn n
n n

1 2 1 2
1 2 1 2     . . . ( . . . )        p p p p p pn n

n n

1 2 1 2
1 2 1 2     . . . ( . . . )

       p p p p p pn n
n n

1 1 2 2
1 1 2 2     . . .        p p p p p pn n

n n

1 1 2 2
1 1 2 2     . . .

           p p p p p pn n
n n n n

1 2 1 2
1 1 2 2 1 1 2 2 1           . . . . . .

     p p pn
n n

1 2
1 1 2 2 1     . . .

Therefore, for every 1 1 0        i n pi i i i i
i i      . Q.E.D.

An alternative direct proof is as follows:

Let N = p
1
 × p

2
 × . . . × p

n
 = q

1
 × q

2
 × . . . × q

m
 where p

i 
, q

i
 are prime numbers and n < m. 

Since p
1
|N and N = q

1
q

2
q

3 
. . . q

m
 it follows from theorem 9 that p

1
 must 

divide some q
i 
. But q

i
 is prime so p

1
 = q

i
 and thus we can cancel p

1
and q

i

from the equation. Now we can repeat the same procedure and 

cancel p
2

and q
j 
, and so on, until all the prime numbers on the LHS 

of  the equation are exhausted and we are left with 1
1




qk
k

m n

 which is 

a contradiction since a product of  prime numbers can never be equal to 1. 

Thus all the factors on each side of  the equation must be the same.

De nition

The least common multiple of  two positive integers a and b, 

denoted by lcm(a, b) is the smallest positive integer that is divisible 

by both a and b. Given a, b ∈  Z+, lcm(a, b) = m ⇒ a|m and b|m and 

if  there is another n ∈ Z+ such that a|n and b|n then m ≤ n

The Fundamental Theorem of  Arithmetic (FTA) provides us with 

a system of  fi nding the least common multiple and the greatest 

common divisor of  two positive integers as follows.

Let x p p p pk
k 1 2 3

1 2 3   . . .  and y p p p pk
k 1 2 3

1 2 3   . . .

Then the lcm(a, b)  p p p pk
k k

1 2 3
1 1 2 2 3 3max( , ) max( , ) max( , ) max( , ). . .       

and consequently gcd( , ) . . .min( , ) min( , ) min( , ) min( ,a b p p p pk
k 1 2 3

1 1 2 2 3 3       kk )
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For example, if  we want to fi nd lcm(28, 72) and gcd(28, 72) 

we fi rst write the prime factorization of  28 and 72.

28 = 22 × 30 × 71

72 = 23 × 32 × 70

So, lcm(28, 72) = 23 × 32 × 71 = 504 

and gcd(28, 72) = 22 × 30 × 70 = 4.

The solutions can be also found on a GDC: 

504lcm(28, 72)

lcm and gdc

4gcd(28, 72)

2/99

1.1

Example 

Given that gcd( , )x y m and lcm(x, y) = n, show that xy = mn

x p p p pk
k 1 2 3

1 2 3   . . .

y p p p pk
k 1 2 3

1 2 3   . . .

Then 

lcm( ) . . ., max( , ) max( , ) max( , ) max( ,x y p p p pk
k 1 2 3

1 1 2 2 3 3       kk n)


gcd( ) . . ., min( , ) min( , ) min( , ) min( ,x y p p p pk
k 1 2 3

1 1 2 2 3 3       kk m)


 mn p p p pk
k k

1 2 3
1 1 2 2 3 3max( , ) max( , ) max( , ) max( , ). . .       

3 31 1 2 2 min( , ) min( , )min( , ) min( , )

1 2 3 ... k k

kp p p pα β α βα β α β×

1 1 1 1 2 2 2 2max( , ) min( , ) max( , ) min( , )

1 1 2 2p p p pα β α β α β α β=

3 3 3 3max( , ) min( , ) max( , ) min( , )

3 3 ... k k k k

k kp p p pα β α β α β α β×

    p p p pk
k k

1 2 3
1 1 2 2 3 3       ...

= xy

Using FTA.

By defi nition of  least common 

multiple.

By defi nition of  greatest common 

divisor.

We use the following equation:

max( α, β) + min( α, β) = α + β

Exercise 1F

1 a State the Fundamental Theorem of  Arithmetic.

 b Write 75 240 as a product of  primes.

2 Let n ∈Z+, n p p p pa a a

k

ak 1 2 3
1 2 3 ...

Show that for all 1 ≤ i ≤ k, a
i
is even ⇔ n is a perfect square.

Hence show that 20 is irrational.

3  Given that n ∈Z+ and  

21!

13!
10!n  show that 17|n and 19|n

4 Find the smallest value of  a such that 7!|a2

5 a Find the smallest value of  n ∈Z+ such that 2940n is a perfect cube. 

b Determine 3 2940n .
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6 a Given that p, q ∈Z+ such that gcd( p, q) = G and lcm( p, q) = L,

  show that pq = GL

b Given that pq = 24 × 34 × 53 × 72 × 113 × 133 and the least 

common multiple of  p and q is 22 × 33 × 52 × 7 × 112 × 13, 

fi nd the greatest common divisor of  p and q

Review exercise
EXAM-STYLE QUESTIONS

1 Consider the integers m = 1199 and n = 781, given in base 10.

a Express m and n in base 11.

b Hence show that gcd(781, 1199) = 11.

2 Consider the set of  numbers S of  the form n2 + n + 17, n ≥ 0.

a Prove that all the elements of  S are odd.

b List the fi rst 10 elements of  S.

c Show that not all the elements of  S are prime.

3 Use the principle of  strong mathematical induction to prove that 

 
  

 

2
2 4n nn

n
 for all n ∈Z+, n ≥ 2.

4 a Let a, b ∈Z +  Prove that if  a2|b2 then a|b

b Is it also true that if  a3|b3 then a|b?

5 The sequence {u
n
}, n ∈Z+, n ≥ 2, satisfi es the recurrence relation u

n+1
= 7u

n
 − 12 u

n−1

Given that u
1
 = 1 and u

2
 = 7, use the principle of  strong mathematical induction 

to show that u
n
 = 4n − 3n

6 Let gcd(a, b) = d. Show that d|a + b and d|a − b. 

Hence show that gcd(a, a + 1) = 1.

7 a Using the Euclidean algorithm, show that gcd(357, 79) = 1.

b Find the general solution to the Diophantine equation 357x − 79y = 1.

8 a A shop owner wants to buy the latest two video games for 

his shop. He has exactly $1770 to spend. Video game A costs 

$31 and game B costs $21. What are the possible number of  

video games A and B that the shop owner can buy?

b He intends to sell video game A for $45 and video game B for $35. How many 

video games of  each type should he buy to maximize his profi ts?

9 Show that if  a, b ∈Z + and a, b are relatively prime, then a|c if  a|bc

10 Show that if  a, b, c ∈Z + and a, b are relatively prime, then ab|c if  a|c and b|c

11 Show that gcd(a, a + k) also divides k. Hence show that gcd(a, a + 2) is 

either 1 or 2.

12 Prove by mathematical induction that 

a k − b k = (a − b)(a k−1 + a k−2b + ... + ab k−2 + b k−1) for all k ∈Z+, k ≥ 2.



Making sense of numbers38

Chapter  summary

De nition: A number N in base b notation is represented by  1 2 1 0...n n n b
N d d d d d 

where   , 0i id d b . The value of  N in base b is given by:
1 2 1 0

1 2 1 0...n n n

n n nN d b d b d b d b d b− −

− −
= × + × + × + + × + ×

De nition: If  , , 0a b a  , we say that a divides b if  there exists c

such that b = ac. We then say that a is a factor of  b, and b is a 

multiple of  a. The notation a b denotes that a divides b. 

Theorem 1:

Let , , , 0a b c a  . Then 

i  and ( )a b a c a b c 

ii a b a bc

iii  and a b b c a c

Theorem 2: The division theorem

Let  and .a d     Then there are unique integers  and ,  0q r r d  , 

such that a = dq + r. We call d the divisor, q the quotient and 

r the remainder. 

De nition: Given that ,a b  we say that d is the greatest common 

divisor of  a and b, denoted by gcd(a,b) provided that:

i  and d a d b

ii if   and  then c a c b c d

Theorem 3:

Let   , , , gcd( , )a b a b d a b . Then we can fi nd ,m n such that 

d = ma + nb.

De nition: A linear Diophantine equation in two variables is an equation 

of  the form ax + by = c, where , ,a b c and which has integer solutions x and y

Theorem 4:

A linear Diophantine equation ax + by = c, where , ,a b c has integer 

solutions in x and y gcd( , )a b c 

Corollary:

Given the linear Diophantine equation ax + by = c, where , ,a b c, 

if  gcd(a,b) c there are no integer solutions to the equation.
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Theorem 5:

If  gcd(a, b) = d, then ,gcd 1
a b

d d

 
 

 
Theorem 6:

Given ax + by = c where gcd(a,b)|c, and x
0
, y

0
 is a particular solution 

then 0 0, ,
b a

d d
x k y k k

    
      
    

  is a complete set of  solutions of  

the given Diophantine equation.

De nition: A positive integer p greater than 1 is said to be prime if  

the only positive factors of  p are 1 and p itself. A positive integer 

greater than 1 which is not prime is said to be composite

Theorem 7:

If  n is a composite positive integer, then n has a factor less than or equal to n

De nition: Two integers a and b are said to be relatively prime or co-prime

if  gcd(a, b) = 1.

Theorem 8 (Euclid’s statement):

There are infi nitely many prime numbers. 

Proof by Strong Mathematical Induction

The format of  a proof  is as follows:

● State the claim that is being proved P
n

● Prove that the claim is true for an initial value of  n, for example 

when n = 1 (though n does not necessarily have to be 1).

● Assume that the claim is true for all i, such that 1 i k 
● Show that if  this assumption is true, the statement is also true for n = k + 1.

● Make a fi nal statement to show that through the inductive process 

the statement is true for all values of  n.

Theorem 9:

If  p is a prime number and 1 2 3 4, , , ,..., na a a a a  such that 

1 2 3 4( ... )np a a a a a     , then 
ip a  for some a

i
 where 1 i n 

Theorem 10: The Fundamental Theorem of Arithmetic

Every positive integer n greater than 1 can be written uniquely as a product of  

primes written in ascending order, i.e. 31 2

1 2 3, 1 ... ...i m

i mn n n p p p p p       , 

where p
i
 is a prime number for all 1 i m  , 

i  and 1 2 3 ... mp p p p   

De nition: The least common multiple of  two positive integers a and b, 

denoted by lcm(a, b) is the smallest positive integer that is divisible by both 

a and b. Given ,a b ,  lcm( , )  and a b m a m b m and if  there is 

another n
  such that  and a n b n  then m n .
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Modular 
arithmetic and 
its applications

2

CHAPTER OBJECTIVES:

10.4 Modular arithmetic. The solution of linear congruences. Solution of 

simultaneous linear congruences (Chinese remainder theorem).

10.6 Fermat’s Little Theorem (ap = a (mod p), where p is prime).

Before you start

1 Express  number s  prouct of  primes 

by successive ivision by prime numbers, 

e.g. 999 = 33 × 37

2 Convert  number from bse 10 to binry 

using successive ivision by 2,

 e.g. 145
10

 = 45
72 
36 0
8 0
9 0
4 
2 0
 0

 145
10

 = 10010001
2

3 Use mthemticl inuction to prove tht 

n3 + 2n is ivisible by 3 for ll n ∈ +, e.g.

 P
n 
: n3 + 2n = 3A, A ∈ +

 When n = 1, LHS = 3 = 3 × 1 ∴P
1
 is true.

 Assume P
k
 is true for some k ≥ 1, k ∈+

 ⇒ k 3 + 2k = 3A, A ∈ + 
⇒ k 3 = 3A − 2k

 When n = k + 1,

 LHS = (k + 1)3 + 2 (k + 1) 

 = k3 + 3k  2 + 3k + 1 + 2k + 2

 = 3 (A + k  2 + k + 1) 

 n since k, A ∈ +, 

then A + k  2 + k + 1 ∈ +

 Since we prove tht P
1
 ws true n we 

showe tht P
k+1

 is true whenever P
k
 is true, 

it follows by the principle of  mthemticl 

inuction tht P
n
 is true for ll n ≥ 1.

1 Fin the prime fctoriztion of:

 a 289 b 8!

 c 1 771 561 d 30 030

2 Convert these numbers from bse 10 to 

binry.

 a 85 b 127

 c 351 d 26

3 Use the principle of  mthemticl 

inuction to prove tht n2 − 1 is ivisible 

by 8 whenever n is n o positive integer.
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From Gauss to cryptography

In this chpter you will be introuce to moulr congruences n 

moulr rithmetic. The nottion for congruence, ≡ ,  rst ppere 

in Guss’ work Disquisitiones Arithmeticae publishe in 80, which 

is ivie into seven sections. The  rst three sections of  this work 

re bout number congruences n the opening wors of  the  rst 

section re: “if  a number a divides the di erence of  the numbers b and c, 

b and c are said to be congruent with respect to a: but if  not, incongruent. 

We call a the modulus. We shall denote in future the congruence of  two 

numbers by the sign ≡ , and adjoin the modulus in parenthesis when 

necessary”. Little i Guss relize tht his work woul be so 

powerful in the ge of  the internet n informtion security.

Moulr rithmetic is the bsis for RSA encryption. RSA stns 

for Rivest, Shmir n Aelmn, the nmes of  the origintors of  

this public-key cryptogrphic system. The system is si to be 

public-key becuse the lgorithm for encrypting the messge is 

publicly known, but only the person who sets up the system 

knows the ecryption lgorithm. Public-key cryptogrphy my 

be compre to mking  box vilble to the public. The person 

who wnts to sen you n encrypte messge puts the messge 

in the box n when this person sens you the close box, only 

you will be ble to open it with your own privte key. 
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Sophie Germain (1776–1831) was a French mathematician who 

dedicated her life to the study of mathematics. In spite of opposition 

from her parents, she pursued her studies on her own and obtained lecture 

notes from the École Polytechnique. Because of the bias against female 

mathematicians at the time, she wrote many of her earlier works under the 

pseudonym Monsieur Le Blanc. She initially corresponded with Lagrange but 

soon her list of correspondents grew to include Legendre and Gauss. She 

had developed a thorough understanding of the methods presented in 

Gauss’ Disquisitiones Arithmeticae. Gauss praised M. Le Blanc, and when in 

1806 he found out that he had been corresponding with a woman his 

praise for her increased. Germain’s contributions to number theory were 

recognized as being outstanding. In fact, she is considered to be one of the 

forerunners towards a proof of Fermat’s Last Theorem with her studies in 

what are now known as Germain primes. Fermat’s Last Theorem states that there are no natural number 

solutions to a Diophantine equation of the form x n + y n = z n for n > 2. Sophie Germain studied the equation xp

+ yp = z p where p is a prime number greater than 2 and such that 2p + 1 is also a prime number. Her work 

remained the most important contribution to Fermat’s Last Theorem from 1738 until 1840 when Ernst 

Kummer came into the picture. Sophie Germain never married and despite early opposition to her work, 

her father supported her  nancially during her lifetime.

2.1 Congruence modulo n

In this section we will look t nturl numbers from  i erent perspective, 

by plcing them in cycles. We shll  rst look t this informlly before we 

elve into e nitions n theorems. The tbles below show you the 

integers 0 to 60 written in cycles of  6 n of  5.

 Table A Table B

 2 3 4 5 6  2 3 4 5

7 8 9 0  2 6 7 8 9 0

3 4 5 6 7 8  2 3 4 5

9 20 2 22 23 24 6 7 8 9 20

25 26 27 28 29 30 2 22 23 24 25

3 32 33 34 35 36 26 27 28 29 30

37 38 39 40 4 42 3 32 33 34 35

43 44 45 46 47 48 36 37 38 39 40

49 50 5 52 53 54 4 42 43 44 45

55 56 57 58 59 60 46 47 48 49 50

5 52 53 54 55

56 57 58 59 60
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Investigation

● Wht cn you sy bout the numbers tht re multiples of  6 in tble A?

● Wht is the connection between the numbers in the secon column 

of  tble B? 

● Choose ny two numbers from the sme column n subtrct the 

smller number from the lrger number. Wht o you notice?

● Wht hppens if  you  two consecutive numbers in the  rst 

column of  tble B? 

● Wht if  the numbers you  in the  rst column re not consecutive?

● Is this lso true when ing numbers tht re in ny other column, 

i.e. both in the secon column or thir column etc…?

● Do the observtions lso hol for numbers in tble A?

● Wht hppens when you  numbers from i erent columns?

● The ition tble below hs been constructe to connect sums 

of  numbers in tble A. Copy n complete the tble:

Aition
Number in 

column 

Number in 

column 2

Number in 

column 3 

Number in 

column 4

Number in 

column 5

Number in 

column 6

Number in 

column 

Answer is 

in column 2

Number in 

column 2

Number in 

column 3

Answer is 

in column 3

Number in 

column 4

Number in 

column 5

Answer is 

in column 2

Number in 

column 6

● Construct n ition tble for tble B. 

Wht conclusions cn you rw from your results?

Two numbers tht re in the sme column of  tble A re si to be 

congruent modulo 6, wheres numbers tht re in the sme column 

of  tble B re si to be congruent modulo 5.

De nition

If  a ∈  n n ∈ +, n > , then the remainder when a is ivie 

by n is enote by r ≡ a (mo n).

All the numbers tht re in column 2 of  tble A leve  reminer 

of  2 when ivie by 6 n we sy tht they re congruent to 2 (mo 6).
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From the investigtion you woul hve notice tht when you 

choose ny two numbers from the sme column in tble A n 

subtrct them, the nswer is lwys ivisible by 6; if  you choose 

numbers from the sme column in tble B n subtrct them, 

the nswer is ivisible by 5. This les to the next e nition of  

moulr congruence.

De nition

If  a, b ∈  n n ∈ +, n > , then a is congruent to b moulo n

if  n ivies a − b. We use the following nottion: 

a ≡ b (mo n) ⇔ n|(a − b)

Theorem 1

Given n ∈ +, a ≡ b (mo n) ⇔ a = b + kn, where k ∈ 

Since the sttement contins  ouble impliction we nee to prove 

the implictions in both irections.

Proof:

⇒ :

a ≡ b (mo n) ⇒ n|(a − b) ⇒ a – b = kn ⇒ a = b + kn, where k ∈ .

⇐ :

Suppose there exists k ∈ such tht

a = b + kn ⇒ a − b = kn ⇒ n|(a − b) ⇒ a ≡ b (mo n) Q.E.D.

Let’s look more closely t tble A on pge 42. Since ech column 

represents x (mo 6) with x ∈ {0, 1, 2, 3, 4, 5}, we see tht x ≡ x (mo 6) 

since 6 | x − x. We sy tht congruence moulo 6 is re exive.

Any two numbers in the sme column re congruent to ech other 

moulo 6, e.g. 

 28 ≡ 4 (mo 6) n 52 ≡ 4 (mo 6)

⇒ 28 ≡ 52 (mo 6) n 52 ≡ 28 (mo 6)

We cn o this for ny pir of  numbers in the sme column; this 

les to the conclusion tht the reltion congruence moulo 6 is 

symmetric.

Similrly, if  you tke ny three numbers in  column, you’ll see tht 

they re ll relte to ech other, e.g.

59 35 6

35 11 6
59 11 6








 

(mod )

(mod )
(mod )
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Agin, we cn o this for ny three numbers in  prticulr column 

so we cn euce tht congruence moulo 6 is  transitive reltion 

on the positive integers. In fct we cn generlize these properties 

s follows:

Congruence moulo n is si to be n equivalence relation becuse 

for ll a, n ∈ +

● a ≡ a (mo n) (re exive) 

● a ≡ b (mo n) ⇒ b ≡ a (mo n) (symmetric)

● a ≡ b (mo n) n b ≡ c (mo n) ⇒ a ≡ c (mo n) (transitive)

An equivlence reltion ivies  set into istinct isjoint sets 

which form  prtition of  tht set. For exmple, congruence 

moulo 6 ivies + into 6 istinct sets of  numbers. Ech set contins 

numbers relte to ech other; in this cse they leve the sme 

reminer when ivie by 6. We cll these sets equivlence clsses.

The investigtion shoul lso hve lerte you to the properties of  

moulr congruences stte in the following theorem.

Theorem 2

If  n ∈ + n a, b, c n d ∈ , a ≡ b (mo n) n c ≡ d (mo n) then:

i a + c ≡ b + d (mo n) 

ii ac ≡ bd (mo n)

Proofs:

i Using the e nition, there exist p, q ∈  such tht

(mod ) ,
( ) ( ) ( )

(mod ) ,

a b n a b pn p
a c b d p q n

c d n c d qn q

     
     

     





Therefore n|(a + c) − (b + d ) ⇒ a + c ≡ b + d (mo n) Q.E.D.

ii Using the e nition, there exist p, q ∈  such tht 

     
   

     

(mod ) ,
( )( )

(mod ) ,

a b n a b pn p
ac b pn d qn

c d n c d qn q





⇒ ac = bd + n (bq + pd + pqn), where (bq + pd + pqn) = k ∈ 

Therefore n|(ac − bd ) ⇒ ac ≡ bd (mo n). Q.E.D.

Corollary

i a ≡ b (mo n) ⇒ ka ≡ kb (mo n) 

ii a ≡ b (mo n) ⇒ ak 
≡ bk (mo n) 

These two properties re very useful n the proof  using 

theorem 2 n mthemticl inuction on k ∈  is left s n exercise.

A irect proof  of  property ii ppers lter on in this chpter.

If you let c = a and 

d = b it follows using ii

that a2
≡ b2 (mod n).
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Example 

Determine whether ech of  these integers is congruent to 4 ( mo 7).

a 80 b 03 c 326 d 762 e −32

a 80 =  × 7 + 3 ⇒ 80 ≡ 3 (mo 7) 4 (mo 7)

b 03 = 4 × 7 + 5 ⇒ 03 ≡ 5 (mo 7) 4 (mo 7)

c 326 = 46 × 7 + 4 ⇒ 326 ≡ 4 (mo 7)

d 762 = 08 × 7 + 6 ⇒ 762 ≡ 6 (mo 7) 4 (mo 7)

e −32 = −5 × 7 + 3 ⇒ −32 ≡ 3 (mo 7) 4 (mo 7)

Use the division algorithm 

n = p × q + r to  nd the remainder.

 The symbol  means 

‘is not congruent to’.

Example 

The computer t system of   compny ssigns recor numbers to its employees using 

their iniviul socil security numbers. To voi using very lrge numbers,  hshing 

function is use s follows: h (N) ≡ N (mo 63), where N is the socil security number.

a Fin the recor numbers for employees with socil security numbers:

i 78348625

ii 679542986

b Wht is the problem with this hshing function?

a i h (78348625) ≡ 78348625 (mo 63) = 56

ii h (679542986) ≡ 679542986 (mo 63) = 6

b There re only 63 recor numbers vilble, thus 

there is no gurntee tht every socil security 

number will give  unique recor number.

Find the remainder when dividing the 

social security number by 163.

In the next exmple you will see the proof  for  result lso 

known s the cancellation theorem.

Example 

Given tht gc (n, c) = , show tht if  ac ≡ bc (mo n) then a ≡ b (mo n).

ac ≡ bc (mo n) 

⇒ n | (ac − bc) 

⇒ n | c (a − b) 

 c ⇒ n|(a − b)

⇒ a ≡ b (mo n)

Use de nition of  linear congruence.

Since gcd (n, c) = 1.
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Exmple 4 uses moulr rithmetic to show the property of  

ivisibility by 9. This property ws introuce in chpter .

Example 

Let x
n
x

n−
x

n−2
…x


x

0
 represent the number x in bse 0. 

Show tht x ≡ x
0
 + x


 +…+ x

n
 (mo 9).

We re require to show tht 

9| x − (x
0
 + x


 +…+ x

n 
)

x = x
0 
× 00 + x


 × 0 +…+ x

n 
× 0n

⇒ x − (x
0
 + x


 +…+ x

n
) 

= x
0 
× 00 + x


 × 0 +…+ x

n 
× 0n − (x

0
 + x

 
+…+ x

n
)

= x
0
 (00 − ) + x


(0 − ) +…+ x

n 
(0n − )

Write x as a polynomial.

Use de nition of  modular congruence.

Now we know tht for ll k ∈+,

10 1 999....9k

k

 


x − (x
0
 + x


 + ... + x

n
) ⇒

x x x x x
n

n

    0 1 20 9 99 99 9( ) ( ) ( ) . . . ( ... )


⇒ 9| x − (x
0
 + x


 + ... + x

n
)

Therefore 

x ≡ x
0
 + x


 +…+ x

n
 (mo 9)

Exercise 2A

1 Evlute the following quntities.

 a 176 (mo 7) b −28 (mo 5) c 3501 (mo 17)

2 Determine whether or not ech of  the following integers is congruent 

to 5 (mo 6).

 a 81 b 68 c −215 d 6785 e 1128 

3 Consier the simultneous equtions 

 3x + y − 7z = a

 2x – y + 3z = b

x + 11y − 3z = c

where x, y, z, a, b, c ∈ . Show tht 2a + 2b + c ≡ 0 (mo 11).

4 Show tht if  a ≡ b (mo n) n c ≡ d (mo n) where a, b, c, d ∈ 

n n ∈ +, n ≥ 2, then a – c ≡ b − d (mo n).

5 Show tht if  a ≡ b (mo n) where a, b, c ∈  n n ∈ +, n ≥ 2, 

then ac ≡ bc (mo nc).

6 Show tht ac ≡ bc (mo n) where a, b, c ∈  n n ∈ +, n ≥ 2 oes 

not necessrily imply tht a ≡ b (mo n).

7 a Given tht a, b ∈  n c ∈ +, show tht if  a ≡ 1 (mo c), 

then ab ≡ b (mo c).

 b Using mthemticl inuction, show tht 5n
 ≡ 1 (mo 4).

 c  The positive integer N is expresse in bse 5. Show tht N is 

ivisible by 4 if  the sum of  its igits is ivisible by 4.
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8 Books re ienti e by  ten-igit book number, a
1
 a

2
 a

3
… a

10

known s n ISBN. A number is  vli ISBN provie tht 

10a
1
+ 9a

2
+ 8a

3
+…+ 2a

9
+ a

10
= 0 (mo 11).

 a Is the number 0070380457  vli ISBN?

 b  Fin the vlue of  x, the lst igit of  071313661x, which mkes 

this  vli ISBN number.

9 a Show tht if  a ≡ b (mo n) n c ≡ d (mo n) where a, b, c, d ∈ 

n n ∈ +, n ≥ 2, then ac = bd (mo n).

 b   Hence or otherwise show, without crrying out ny long 

multipliction, tht 35 678 × 25 322 ≡ 2 (mo 6).

10 a Prove by inuction or otherwise tht for ll n ∈ , 

10n − (−1) n is ivisible by 11.

 b   Let x
n  
x

n−1 
x

n−2
 … x

1
x

0
 represent the number x in bse 10. 

Show tht x ≡ x
0
 − x

1
+ x

2
 − … + (−1) n x

n
 (mo 11).

 c  Hence show tht 172 489 leves  reminer of  9 when 

ivie by 11.

11  a De ne wht is ment by the sttement a ≡ b (mo n), 

where a, b, n ∈ +

 b  Hence prove tht if  a ≡ b (mo n) then a3
 ≡ b3 (mo n).

 c  Determine whether the converse is lwys true, i.e. 

a3
≡ b3 (mo n) ⇒ a ≡ b (mo n).

2.2 Modular inverses and linear congruences

Suppose you re ske to  n ll the vlues of  x which stisfy the 

liner congruence x ≡ 2 (mo 5).

x ≡ 2 (mo 5) ⇒ 5|x – 2 ⇒ x – 2 = 5k, k ∈ 

Then x = 5k + 2, k ∈  is  generl solution of  this liner eqution. 

Note tht there re in nite solutions to this eqution, nmely 

{…−3, −8, −3, 2, 7, 2…}.

Generlizing, we cn solve the liner congruence x ≡ a (mo n), 

where a, n ∈ + s follows:

x ≡ a (mo n) ⇒ x – a = kn, k ∈ 

Therefore  generl solution will be x = kn + a, k ∈ 

De nition

A congruence of  the form ax ≡ b (mo n) where a, b ∈ , n ∈ +

n x is n integer is clle  linear congruence

Before we move on to solving liner congruences we nee to prove 

the following theorem.
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Theorem 3 

If  a, n ∈ +, n >  where a n n re reltively prime, it follows 

tht n inverse of  a (mo n), enote by a , exists such tht 

aa ≡ aā ≡  (mo n), a ∈ +, a < n. Furthermore, this inverse 

is unique moulo n

Proof:

The proof  is one in two prts. First we must prove tht the inverse 

exists n then we must show tht it is unique.

i Existence

In chpter  we showe tht if  gc (a, n) =  we cn  n integers 

x n y such tht xa + yn = . 

Since a n n re reltively prime it follows tht:

gc (a, n) =  ⇒ xa + yn =  ⇒ xa + yn ≡  (mo n).

But yn (mo n) ≡ 0 (mo n) ⇒ xa + yn ≡ xa (mo n).

Combining these results, it follows tht xa ≡  (mo n) n 

so x is n inverse of  a (mo n).

ii Uniqueness

Let’s now ssume t ht this inverse is not unique, i.e. there is some 

t ∈ + such tht ta ≡ xa (mo n) n t x (mo n).

Then n|ta − xa ⇒ n|a (t − x).

Since we know tht a n n re co-prime, it follows tht n|(t − x).

⇒ t − x = kn, k ∈ + 
⇒ t ≡ x (mo n), which is  contriction. 

Therefore the multiplictive inverse is unique (mo n). Q.E.D.

Exmple 5 will show you how to  n the multiplictive inverse of  

 given number (mo n).

In question 4 of  Exercise 2A you prove tht if  a ≡ b (mo n) n c ≡ d (mo n), 

where a, b, c, d ∈  n n ∈ +, n ≥ 2, then a – c ≡ b − d (mo n).

We shll now use this result to prove the next theorem.

Theorem 4

For ll n, k ∈ +, n > k, na − k (mo n) ≡ −k (mo n).

Proof:

By e nition we know tht na ≡ 0 (mo n) since n|na − 0.

Since k < n n n|(k − k) we lso hve tht k ≡ k  (mo n).

Combining these two results we obtin

na − k ≡ 0 − k  (mo n)⇒ na − k ≡ − k (mo n). Q.E.D.

For exmple, 69 ≡ 6 (mo 7) ≡ − (mo 7) since 6 = 7 − .

This result is useful when working out congruences s emonstrte 

in the next exmples.

We described how to 

solve the special case 

of linear congruence 

just before the 

de nition.
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Example 

In ech prt, etermine whether  multiplictive inverse exists, n if  it oes  n it.

a 3 (mo 7) b 34 (mo 51) c 7 (mo 24) d 8 (mo 51)

a Either

 Since gc (3, 7) =  n inverse exists.

  = 7 − 2 × 3 

 Therefore the multiplictive inverse of  

 3 (mo 7) is −2 or 5.

OR

 3 ≡ 3 (mo 7)

 5 × 3 ≡ 5 (mo 7) ≡  (mo 7) 

Therefore the multiplictive inverse of  

3 (mo 7) is 5 or −2.

b 5 = 34 ×  + 7 

 34 = 7 × 2 + 0

 gc (5, 34) ≠ , therefore 

 34 (mo 5) oes not hve n inverse.

c 24 = 7 × 3 +  

 7 = 3 × 2 +  

 Since gc (24, 7) =  n inverse exists.

Either

  = 7 − 3 × 2 

  = 7 − 2 (24 – 7 × 3) 

  = 7 × 7 − 2 × 24

Therefore the multiplictive 

inverse of  7 (mo 24) is 7.

OR

 7 ≡ 7 (mo 24)

 7 × 7 ≡ 49 (mo 24) ≡  (mo 24) 

 Therefore multiplictive inverse of  7 is 7.

d 5 = 8 × 6 + 3 

 8 = 3 × 2 + 2

 3 = 2 ×  +  

 Since gc (8, 5) =  n inverse exists.

  = 3 − 2 ×  

  = 3 − (8 – 3 × 2)

  = 3 × 3 –  × 8

  = 3 (5 − 6 × 8) −  × 8

  = 3 × 5 – 9 × 8

Therefore the multiplictive inverse of  

8 (mo 5) is −9 or 32.

Use the Euclidean algorithm to  nd gcd (7, 3).

Find x, y such that 1 = 7x + 3y.

When the numbers are small it is sometimes 

easier to  nd a multiplier that leaves a remainder 

of  1.

Use the Euclidean algorithm to  nd gcd (51, 34).

Use the Euclidean algorithm to  nd gcd (7, 24).

Work backwards to  nd x, y such that 

1 = 7x + 24y.

7 is a self  inverse in modulo 24.

Use the Euclidean algorithm to  nd 

gcd (8, 51).

Work backwards to  nd x, y such that 

1 = 51x + 8y.

Note that in this example it is easier to work 

backwards than to  nd a multiple of  8 that 

leaves a remainder of  1 when divided by 51.
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The next exmple emonstrtes how to use the multiplictive inverse 

to solve liner congruences.

Example 

Fin the solutions to the liner congruences:

a 3x ≡ 5 (mo 7) b 9x ≡ 3 (mo 5) c 287x ≡ 3mo (39) 

a From Exmple 5 prt a, we know 

tht the multiplictive inverse of

3 (mo 7) is −2.

 Hence

 −2 × 3x ≡ −2 × 5 (mo 7) 

⇒ −6x ≡ −0 (mo 7)

⇒ −6(mo 7) × x (mo 7) ≡ −0 (mo 7)

⇒ x ≡ −3 (mo 7) 

⇒ x ≡ 4 (mo 7)

 Therefore x = 7k + 4, k ∈.

(5 is lso  multiplictive inverse of  

3(mo 7). It is left to you to con rm tht 

the sme result is obtine when using 5 

inste of  −2.)

b 9x ≡ 3 (mo 5)

 9 ≡ − (mo 5)

⇒ −9 ≡  (mo 5)

 Therefore the inverse of  9 (mo 5) is –.

 −9x ≡ −3 (mo 5)

⇒ x ≡ 2 (mo 5) 

 Therefore x = 5k + 2, k ∈.

c 39 = 287 ×  + 32 

 287 = 32 × 8 + 3

 32 = 3 ×  +  

 gc (39, 287) = 

  = 32 –  × 3

  = 32 −  (287 – 8 × 32) 

  = 9 × 32 −  × 287

  = 9 (39 –  × 287) –  × 287

  = 9 × 39 – 0 × 287

Therefore the inverse of  287(mo 39) 

is –0.

 287x ≡ 3 mo (39)

⇒ −2870x ≡ −30 (mo 39)

⇒ x ≡ 289 (mo 39)

 Therefore x = 39k + 289, k ∈.

Show that 7 and 3 are co-prime and  nd 

a, b such that 1 = 7a + 3b.

Multiply both sides by the inverse of  3 (mod 7).

−6 (mod 7) = 1.

Using Theorem 2.

Write the general solution.

Multiply both sides of  the equation by the 

inverse.

Write the general solution.

Use the Euclidean algorithm to show that 

319 and 287 are co-prime and  nd a, b 

such that 1 = 287a + 319b.

Identify the inverse of  287 (mod 319).

Multiply both sides of  the congruence by the 

inverse and solve for x.
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Example 

Without crrying out ny ition or multipliction,  n the reminer when:

a 235 + 4684 is ivie by 2

b 252 × 68 is ivie by 

c 2345 × 703 is ivie by 23

a 235 ≡ − (mo 2) 

 4684 ≡ 4 (mo 2) 

235 + 4684 ≡ − + 4 (mo 2) 

≡ 3 (mo 2)

 Therefore the reminer is 3.

b 252 ≡ − (mo ) 

 68 ≡ 3 (mo ) 

 252 × 68 ≡ −3 (mo ) ≡ 8 (mo )

 Therefore the reminer is 8.

c 2345 ≡ − (mo 23) 

 703 ≡ −2 (mo 23) 

 2345 × 703  ≡ − × −2(mo 23) 

≡ 2 (mo 23)

 Therefore the reminer is 2.

1235 = 12 × 102 + 11

4684 = 12 × 390 + 4

When 252 is divided by 11 the remainder is 10.

The remainder when 168 is divided by 11 is 3.

Remainder r < 0, so use theorem 4 to change to a 

positive integer.

2345 leaves a remainder of  22 and 7013 leaves a 

remainder of  21 when divided by 23.

Exercise 2B

1 For ech of  the following, etermine whether or not  multiplictive 

inverse exists, n if  so then  n it.

 a 5 (mo 21) b 35 (mo 63)

 c 108 (mo 153) d 17 (mo 50)

2 Without crrying out ny ition or multipliction,  n the reminer when:

a 1632 + 2467 is ivie by 11

b 3715 × 2369 is ivie by 21

c 784 × (566 + 723) is ivie by 15

3 Fin the solutions to these liner congruences:

 a 13x ≡ 4 (mo 28)

 b 156x ≡ 11 (mo 71)

 c 108x ≡ 2 (mo 133)

4 a  If  k, 0 ≤ k < 11, is  solution of  the congruence 4x ≡ 5 (mo 11), 

 n the vlue of  k.

 b Show tht ll solutions of  4x ≡ 5 (mo 11) re congruent to k.
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5 Let the gretest common ivisor of  1192 n 1108 be d

 a Using the Euclien lgorithm,  n d.

 b Hence  n integers a n b such tht 1192a + 1108b = d.

 c Using prt b, solve 277x ≡ 2 (mo 298), where x < 298, x ∈+

2.3 The Pigeonhole Principle 

It is often the cse in mthemtics tht  simple fct cn be 

pplie in n elegnt wy to solve  problem tht my 

initilly seem i  cult to solve. The Pigeonhole Principle is 

 very simple rule tht is extremely useful when solving 

some problems involving numbers. 

The Pigeonhole Principle: If  m pigeons occupy n pigeonholes 

n m > n, then t lest one pigeonhole must be occupie by 

more thn one pigeon.

 Gustav Lejeune Dirichlet (1805 – 1859) is very well-known for his 

fundamental work on functions. However, Dirichlet was also very active 

in Number Theory and he was the  rst mathematician to formulate the 

Pigeonhole Principle which is sometimes referred to as the Dirichlet box 

principle. It was also Dirichlet who proved Fermat’s Last Theorem for the 

special case when n = 5, i.e. that there are no integer solutions to the 

equation x 5 + y 5 = z 5

As simple n obvious s the Pigeonhole Principle might seem, it cn 

be pplie in vrious situtions s the following exmples will show.

Example 

Wht is the minimum number of  stuents in  Mthemtics HL clss tht will gurntee 

tht t lest two stuents

a obtin the sme gre in Mthemtics

b hve  birthy in the sme month?

a Since there re 7 possible gres, it 

follows using the Pigeonhole Principle 

tht 8 is the smllest number of  

stuents tht will gurntee t lest 

two gres tht re the sme.

b There re 2 months in  yer so the 

smllest number of  stuents tht will 

gurntee tht t lest 2 stuents hve 

their birthy in the sme month is 3.

Consider the possible grades available.

Apply the Pigeonhole Principle.

Note that although 8 students will guarantee that 

at least two students achieved the same grade, not 

all grades need to be represented in the results.  

This means that the pigeonhole principle does not  

imply that all pigeonholes have to be occupied.

Consider the number of  months possible.

Apply the Pigeonhole Principle.

The number of  students has to be greater than the 

number of  months.
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Example 

Tom sorts out his builing blocks ccoring to size. In  box he hs builing blocks tht 

hve the sme shpe n size but i erent colours. In one of  the boxes he hs 50 re 

blocks, 35 blue, 25 green n 40 white. 

a Wht is the minimum number of  blocks he cn pick from this box (while blinfole) 

to gurntee tht he hs picke n ienticl pir of  blocks?

b How mny blocks must he pick to ensure tht he hs  pir of  ienticl re blocks?

a There re 4 i erent colours in the box. 

He must therefore pick 5 blocks to 

gurntee tht 2 re of  the sme colour.

b There re 50 blocks, 50 of  which re re. 

Tom will hve to pick 02 blocks to ensure 

tht t lest 2 blocks re re.

First list the possible blocks he can choose from.

Apply the Pigeonhole Principle since the number 

of  colours is n and the number of  blocks is m, 

and the condition is that m > n he must pick at 

least 5 blocks.

Sort out blocks into red and other colours.

Worse case scenario, he could pick all the 

non-red blocks  rst. So he must pick another 2 

to guarantee the result. 

Example 

How mny stuents woul nee to tten the next IB stuent conference to ensure tht 

there re t lest two stuents with the sme initils?

The number of  i erent wys of  combining 

 rst n secon initils is 262

So 262 +  = 677 stuents must tten the 

conference to gurntee tht t lest two 

stuents hve the sme initils.

There are 26 letters in the alphabet. Find the 

number of  di erent ways of  combining  rst and 

second initials.

Use the Pigeonhole Principle where n is the 

number of  possible di erent initials and m is the 

number of  students.

The following exmples illustrte  more elegnt use of  the Pigeonhole Principle use in 

Number Theory.

Example 

Let A be  set contining 25 positive integers. Show tht there re two elements in A tht 

will leve the sme reminer when ivie by 24.

For ll m ∈ A, m = 24q + r, 0 ≤ r < 24.

Since there re 25 positive integers n ech 

cn be written in this form, by pplying the 

Pigeonhole Principle there must be t lest 

two integers tht leve the sme reminer 

when ivie by 24.

Use the division algorithm.
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Example 

Show tht there is  positive integer n, such tht  ivies 2n − .

Let A = { 2 − , 22 − , 23 − , …, 22 − }.

Consier 2i –  ≡ a (mo ) for 0 ≤ i ≤ 2.

Then by the Pigeonhole Principle there 

must be some j, 0 ≤ j < i ≤ 2, such tht 

2i –  ≡ 2j −  (mo )

⇒ 2i
≡ 2j (mo ) 

⇒ 2i − 2j = k, k ∈+

⇒ 2j (2i−j − ) = k

⇒ |2j (2i−j − ) 

⇒ |(2i−j − ) 

Write out 12 integers in the form 2 n  1.

Use modular arithmetic to denote the remainders 

when each of  these numbers is divided by 11.

There are only 11 possible remainders when 

dividing by 11.

Since 0 ≤ j < i ≤ 12, 2 j and 2 i− j − 1 

are positive integers.

Since 11 is an odd number gcd (2 j, 11) = 1

Example 

Show tht if  6 integers re chosen from the set A = {n|n ∈+, n ≤ 30}, then t lest one 

of  the chosen integers must ivie nother chosen integer.

Ech chosen integer cn be written s 2ik

where k is n o number, k ≤ 29.

The number of  o numbers k is therefore 

5, n since 6 numbers re chosen there 

must be the sme vlue of  k for two 

numbers a = 2ik, b = 2jk, where i > j ⇒ b|a

n i < j ⇒ a|b

This is true using the Fundamental Theorem of  

Arithmetic, e.g. 

A = {20 × 1, 21 × 1, 20 × 3, 22 × 1, …, 20 × 29,

21 × 15} 

The largest number that can be chosen is 30 so 

the largest odd number k is 29.

Apply the Pigeonhole Principle for k.

The results obtine in the previous two exmples cn be generlize. 

These re left for you to prove in questions 5 n 6 of  Exercise 2C.

The Pigeonhole Principle cn be generlize s follows:

The Generalized Pigeonhole Principle

If n pigeonholes are occupied by kn + 1 or more pigeons, where k ∈ +, then 

at least one pigeonhole must be occupied by k + 1 or more pigeons.

This does not mean 

that each pigeonhole 

has to be occupied.
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Exercise 2C

1 a There re 29 stuents in  clss. At lest how mny 

 stuents hve  rst nmes tht begin with the sme letter?

 b A rwer contins 10 re pens n 15 blue pens.

How mny pens shoul be rwn (while you re blinfole) 

to ensure tht 3 blue pens re inclue?

 c Gino suggests tht the items in  wrehouse shoul be 

 given n lphnumeric coe consisting of   letter of  the 

 lphbet followe by two igits. His mnger tells 

 him tht this will not work becuse some items re boun 

 to hve the sme coe. At lest how mny i erent items 

 re in the wrehouse?

2 Show tht if  ny 6 integers re chosen from the set 

S = {1, 2, 3, …, 10}, t lest two of  them must  up to 11.

3 a 26 numbers re chosen from the integers between 1 n 

50 inclusive. Show tht t lest two of the integers re consecutive.

 b  Hence or otherwise prove tht if  we choose n + 1 integers 

from the set A = {k|k ∈ +, k ≤ 2n}, then there will be t lest 

one consecutive pir.

4 a Six positive integers re chosen t rnom. Show tht t lest 

two of  them will leve the sme reminer when ivie by 5.

 b Hence or otherwise prove tht if  ny n + 1 positive integers 

 re chosen t rnom, t lest two of  them will leve exctly 

 the sme reminer when ivie by n.

5 Prove tht if  n + 1 integers re chosen from the set 

A = {k|k ∈ +, k ≤ 2n}, t lest one of  the chosen integers must 

ivie nother chosen integer.

6 Show tht for every positive o number m there exists 

n ∈ + such tht m ivies 2n − 1.
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2.4  The Chinese Remainder Theorem or systems 
of linear congruences

In the thir chpter of   Chinese book The Mathematical 

Classic of  Sun Zi ttribute to Sun Zi Sunjing between 

the thir n  fth century ad, problem 26 sttes the 

following: “Now there are an unknown number of  things. 

If  we count by threes, there is a remainder 2; if  we count by  ves, 

there is a remainder 3; if  we count by sevens, there is a 

remainder 2. Find the number of  things.” 

If  we let x represent the number we re looking for, then 

the three conitions bove cn be written s  triplet of  

liner congruences s follows:

x ≡ 2 (mo 3)

x ≡ 3 (mo 5)

x ≡ 2 (mo 7)

Of  course, we coul try to  n the solution by going through the 

positive integers tht leve  reminer of  2 when ivie by 7 n 

checking their reminers when ivie by 5 n by 3. We woul 

very quickly  n out tht 23 stis es ll three conitions. 

If  we re given  pir of  simultneous liner congruences we cn 

solve by using substitution. The next exmple illustrtes this.

Example 

Solve the following pir of  liner congruences:

x ≡ 2 (mo 7) 

3x ≡ 2 (mo 5)

x ≡ 2 (mo 7) ⇒ x = 7t + 2 

⇒ 3x = 3 (7t + 2) ≡ 2 (mo 5) 

⇒ 2t + 6 ≡ 2 (mo 5) 

⇒ 2t ≡ −4 (mo 5) ≡  (mo 5)

⇒ 20t + t ≡  (mo 5)

⇒ t ≡  (mo 5)

⇒ t = 5k +  

But

x = 7t + 2 = 7 (5k + ) + 2

⇒ x = 35k + 9, k ∈ +

Using the de nition of  modulo 2.

Substitute for x in second equation.

Subtract 6.

20t ≡ 0 (mod 5) 

Simplify.

Substitute for t and  nd the general solution.
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To  n  solution for three or more simultneous liner congruences 

 i erent metho is require n there is n lgorithm tht works, 

provie tht the ivisors re pirwise co-prime. Before we prove the 

generl lgorithm let’s go through the exmple of  Sun Zi’s puzzle n 

try to solve it step by step.

We notice tht the ivisors 3, 5 n 7 re pirwise co-prime, i.e. 

gc (3, 5) = , gc (3, 7) =  n gc (5, 7) = 

If  we  n numbers A, B n C such tht

● A leves  reminer of  2 when ivie by 3 but ivies both B n C

● B leves  reminer of  3 when ivie by 5 but ivies both A n C

● C leves  reminer of  2 when ivie by 7 but ivies both A n B

then the number x
0

= A + B + C will stisfy ll three conitions. 

We will now try to  n three such numbers to help us solve Sun Zi’s 

problem n this is where our knowlege of  moulr rithmetic 

comes in hny. 

If  we tke the prouct 5 × 7 = 35, we know tht gc (35, 3) = . 

This mens tht 35 hs n inverse moulo 3, n we cn  n it.

The sme pplies if  we tke the prouct 3 × 7 = 2 where 

gc (2, 5) =  n we cn  n n inverse of  2 moulo 5.

An if  we tke the prouct 3 × 5 = 5, gc (5, 7) = , then 5 hs 

n inverse moulo 7.

It is left s n exercise for you to  n the inverses n check tht 

the following re true:

2 × 35 ≡  (mo 3) ⇒ 40 ≡ 2 (mo 3) ⇒ A = 40

 × 2 ≡  (mo 5) ⇒ 63 ≡ 3 (mo 5) ⇒ B = 63

 × 5 ≡  (mo 7) ⇒ 30 ≡ 2 (mo 7) ⇒ C = 30

One solution for x woul be x
0
= 40 + 63 + 30 = 233. However, it 

is not the smllest solution, which, we know, is 23. In fct, ny 

multiple of  05, (the prouct of  3, 5 n 7) e to or subtrcte 

from 233 will lso stisfy ll three congruences. 
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In orer to  n  generl solution we  rst nee to  n the smllest 

positive integer tht is  solution, n to o this we nee to  n the 

reminer when 233 is ivie by 05:

233 ≡ 23 (mo 05)

Therefore the generl solution is x = 23 + 05k, k ∈ +

If  you were ble to follow the working in this exmple you shoul 

be ble to unerstn the proof  of  the Chinese Reminer Theorem 

which hols for ny number of  liner congruences.

Theorem 5: The Chinese Remainder Theorem

Given the system of  liner congruences: 

x ≡ a

(mo m


)

x ≡ a
2
(mo m

2
)

x ≡ a
3
(mo m

3
)

. 

x ≡ a
n
(mo m

n
)

If  m

, m

2
, m

3
, …, m

n
 re pirwise reltively prime positive integers, 

there exists  unique solution moulo M where 

M = m


× m
2

× m
3

× … × m
n
. In other wors, there is  prticulr 

solution 0 ≤ x
0
< M n  generl solution given by x ≡ x

0
 + kM.

Proof:

Let M = m

× m

2
× … × m

n
 n let M

k

M

m
k

 .

By this e nition it follows tht gc (M
k
, m

k
 ) = , which mens tht 

M
k
 hs n inverse p

k
 such tht:

M
k
p

k  
≡  (mo m

k
 ) ⇒ a

k
M

k
p

k 
≡ a

k
(mo m

k
 )

Then one prticulr solution woul be 

x
p 
= a


M

 
p


+ a

2
M

2 
p

2
+…+ a

k
M

k  
p

k 
+…+ a

n
M

n  
p

n
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You cn verify tht x
p 
≡ a

i 
(mo m

i
 ) becuse 

M M m i k M a m
k k i k k

M

m
k

k
    0(mod ), (mod )for and

We then nee to  n the smllest solution by tking x
0
≡ x

p 
(mo M ) 

n the generl solution is given by x = x
0 
+ kM. Q.E.D.

The next exmple illustrtes how to use this lgorithm for  

system of  three simultneous liner congruences.

Example 

Solve the following system of  liner congruences:

x ≡ 2 (mo 5)

x ≡ 3 (mo 7) 

x ≡ 4 (mo )

M = 385, M
 
= 77, M

2 
= 55 n M

3 
= 35

77 ≡ 2 (mo 5)

55 ≡ 6 (mo 7)

6 × 55 ≡  (mo 7) 

⇒ 8 × 55 = 3 (mo 7) 

35 ≡ 2 (mo )

6 × 35 ≡  (mo ) 

⇒ 24 × 35 ≡ 4 (mo ) 

77 + 8 × 55 + 24 × 35 = 907 

Therefore  solution woul be 907 n x
0 
= 367.

A generl solution woul therefore be: 

x = 367 + 385k, k ∈ +.

Find M, M
1
 , M

2
 , M

3
.

Since the condition is already met we 

may stop here.

6 is the inverse of  M
2 
(mod 7).

Multiply by 3.

6 is the inverse of  M
3 
(mod 11).

Multiply by 4.

Find the primary solution, x
0 
.

Write the general solution.

In the next exmple we will use the lgorithm to solve the 

pir of  liner congruences in Exmple 4. 
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Example 

Using the lgorithm of  the Chinese Reminer Theorem, solve the following pir of  

liner congruences:

x ≡ 2 (mo 7)

3x ≡ 2 (mo 5) 

3x ≡ 2 (mo 5) 

⇒ 6x ≡ 4 (mo 5)

⇒ x ≡ 4 (mo 5)

The two congruences become 

x ≡ 2 (mo 7)

x ≡ 4 (mo 5)

gc (5, 7) = 

5 ≡ 5 (mo 7)

⇒ 5 ≡  (mo 7) 

⇒ 30 ≡ 2 (mo 7)

7 ≡ 2 (mo 5) ⇒ 2 ≡  (mo 5) 

⇒ 84 ≡ 4 (mo 5)

30 + 84 = 4 ⇒ x
0 
= 4 ≡ 9 (mo 35)

Generl solution is x = 9 + 35k, k ∈ +

Multiply the congruence by the inverse of  3, 

the coe  cient of  x, and simplify.

M = 35

3 is the inverse of  5 (mod 7).

Multiply by 2 to obtain 30 which is the  rst 

multiple of  5 that satis es this congruence.

3 is the inverse of  2 (mod 5).

Multiply by 4 to obtain 84 which is the  rst 

multiple of  7 that satis es this congruence.

Find x
0
 .

Write the general solution.

Investigation

The Inin mthemticin Brhmgupt (7th Century ad) pose the following: 

“When eggs in a basket are removed two, three, four,  ve or six 

at a time, there remain respectively one, two, three, four or  ve eggs. 

When they are taken out seven at a time none are left over. Find the 

smallest number of  eggs that could have been contained in the basket.”

● Write this informtion s  set of  6 liner congruences.

● Wht o you notice bout the 6 liner congruences?

● Which congruences woul you eliminte in orer to  n  solution?

● Wht is the solution for the remining set of  congruences?

● Does this solution lso stisfy the congruences which were eliminte?

In this investigtion you will hve notice tht  solution coul 

be foun, however this is not lwys the cse. Consier the 

following set of  liner congruences:

x ≡  (mo 2)

x ≡  (mo 3)

x ≡ 2 (mo 6) 
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In this set of  equtions the ivisors re not mutully co-prime 

n there is no solution. The equtions re reuce to 3 liner 

Diophntine equtions s follows:  

There are three 

equations and two 

unknowns. If you solve 

the equations pair-wise, 

the solutions will not 

satisfy the third equation.

x ≡  (mo 2) ⇒ x −  = 2y ⇒ x − 2y = 

x ≡  (mo 3) ⇒ x −  = 3y ⇒ x − 3y = 

x ≡ 2 (mo 6) ⇒ x − 2 = 6y ⇒ x − 6y = 2

The next exmple shows  possible ppliction of  the Chinese Reminer Theorem.

Example 

Crlos originlly h  collection of  00 toy soliers, but he lost some of  them. One y 

he rrnge his soliers in rows of  3 n foun tht the lst row h only 2 soliers. He 

then rrnge them in rows of  4, but gin the lst row h only 2 soliers. He ecie to 

rrnge them in rows of  5 n this time the lst row h only 3 soliers. How mny of  the 

originl 00 toy soliers h he lost?

x ≡ 2 (mo 3)

x ≡ 2 (mo 4)

x ≡ 3 (mo 5)

M = 60, M
 
= 20, M

2 
= 5 n M

3 
= 2

20 ≡ 2 (mo 3)

5 ≡ 3 (mo 4)

⇒ 30 ≡ 2 (mo 4)

2 ≡ 2 (mo 5)

⇒ 48 ≡ 3 (mo 5)

20 + 30 + 48 = 98 ≡ 38(mo 60) = 278 

= 38 (mo 60) 

⇒ x
0 
= 38 giving  generl solution 

x = 38 + 60n.

But we wnt 0 < x ≤ 00, so x = 38 or 98.

Therefore, either 62 or 2 of  the originl 

toy soliers h been lost. 

Write the information given as a set of  linear 

congruences.

Find M, M
1 
, M

2 
, M

3 
.

Sometimes it is easier to  nd which multiple 

will give the remainder required thus avoiding 

working with large numbers.

Multiplying by four will give the required 

congruence.

Find the primary solution x
0 
.

Write the general solution.

Find x to satisfy the conditions given.

In Exmple 7, short cuts were tken by  ning  multiple which 

gives the require congruence.  It is left up to you to show tht the 

nswer obtine woul be the sme if  the lgorithm were followe 

using inverses.
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Exercise 2D

1 Solve the pir of  liner congruences.

x ≡ 2 (mo 11)

x ≡ 2 (mo 13)

2 Fin the smllest positive integer tht leves  reminer of  3 

when ivie by 7, n  reminer of  1 when ivie by 12.

3  Solve the system of  liner congruences.

x ≡ 1 (mo 3)

2x ≡ 3 (mo 5)

4 Solve the systems of  liner congruences.

a x ≡ 3 (mo 4)

x ≡ 1 (mo 5) 

x ≡ 2 (mo 7)

b x ≡ 1 (mo 3)

x ≡ 2 (mo 4)

x ≡ 3 (mo 5) 

c x ≡ 1 (mo 2)

x ≡ 3 (mo 7)

x ≡ 1 (mo 11)

5 Mrielle buys some tulip bulbs to plnt in her gren. 

She is not sure how mny bulbs she hs in totl, but while 

eciing how to plnt them she notices the following: if  she 

plnts them in groups of  8 she hs only 6 bulbs in the lst 

group, n if  she plnts them in groups of  9 she hs 8 bulbs 

left over. She knows tht she hs less thn 100 bulbs. How mny 

more bulbs woul she nee in orer to plnt ll the bulbs 

evenly in groups of  10?

6 On his birthy prty invittion to his school friens, Pul 

inclue the following puzzle:

If  my age is divided by 2 or by 5 the remainder is 1, and if  

divided by 4 the remainder is 3. How ol is Pul?

7 Krin n Ysmin re helping t the school fun-rising evening. 

They hve  lrge box full of  cookies tht they wnt to pck 

into bgs. They were tol tht the box contine between 300 

n 350 cookies. They notice tht if  they pck them in bgs of  3, 

5 or 7 they re left with one extr cookie, but if  they pck them in 

bgs of  4 then no cookies re left over. Assuming tht they 

i not et ny of  the cookies, how mny cookies i they pck?
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2.5  Using cycles for powers modulo n and 
Fermat’s Little Theorem 

We hve lrey shown, on pge 45, tht if  a ≡ b (mo n) where 

a, b ∈  n n ∈ +, then a2
≡ b2 (mo n). An in Exercise 2A 

question  uner the sme conitions you showe tht a3
≡ b3 (mo n). 

In the next theorem we shll generlize this result.

Theorem 6

Given tht a ≡ b (mo n) where a, b ∈  n n ∈ +, then am
 ≡ 

bm (mo n) for ll m ∈ +

Proof:

a ≡ b (mo n) ⇒ a − b = kn ⇒ a = b + kn

Therefore am = (b + kn)m

Using the binomil theorem:

a
m

b
m

b kn
m

r
b kn

m

m

m m m m r r
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Therefore n|am − bm 
⇒ am 

≡ bm (mo n). Q.E.D.

This result is very importnt when working with moulr 

congruences using lrge powers. If  you were ske to  n the 

reminer when 25453 is ivie by 2 you will relize tht  clcultor 

is useless becuse the number is too big n cuses n over ow. 

This is where moulr rithmetic comes in very hny.

25 ≡  (mo 2) ⇒ 25453
 ≡ 453 (mo 2) ≡  (mo 2). So the reminer 

when 25453 is ivie by 2 is .

Similrly if  we wnt to  n the reminer when 980 is ivie by  

we cn rgue tht 98 ≡ −(mo ) ⇒ 980
 ≡ −0 (mo ) ≡ − (mo ).

Since by the ivision lgorithm the reminer is lwys greter or 

equl to zero, the reminer when 980 is ivie by  is 0.

On page 45 in the text 

box next to Theorem 2

An alternative way to 

prove this theorem is 

using Theorem 2 and 

mathematical induction, 

but this is left as an 

exercise for you.
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Example 

Fin the reminer when 

a 25 is ivie by 7

b 22 is ivie by 4.

a 23
≡  (mo 7) 

 25
≡ (23)7

≡ 7 (mo 7)

Therefore the reminer when 25 is ivie 

by 7 is .

b 22 = 2 × 220

 25
≡ 32 ≡ −9(mo 4)

 220 = (25)4
≡ (−9)4 (mo 4) 

≡ (8)2 (mo 4) 

Since 8 ≡ −(mo 4), 

it follows tht 

 220
≡ (8)2 (mo 4)  ≡ (−)2 (mo 4) 

≡  (mo 4).

 22
≡ 2 (mo 4) × 220 (mo 4) = 2 

Therefore the reminer when 22 is ivie 

by 4 is 2.

Find the smallest power of  2 which leaves a 

remainder when divided by 7.

Rewrite 51 in terms of  23

Find the smallest power of  2 that gives a 

number close to 41.

A nice feture of  moulr rithmetic is tht it llows us to compute 

reminers of  very lrge numbers when written in exponent form. 

We hve lrey shown how this cn be one in some exmples in 

this chpter, but wht if  the powers re not so obviously fctorize? 

This is where powers of  2 come in hny. 

Let’s try to compute the reminer when 7256 is ivie by 3.

256 = 28

72 = 49 ≡ −3 (mo 3) 

74 = 722
≡ 9 (mo 3)

78 = 723
≡ 8 (mo 3) ≡ 3 (mo 3) 

The same answer can be obtained using 

49 ≡ 10(mod 13), but using −3 (mod 13) 

makes the working easier.

76 = 724
≡ 9 (mo 3)

732 = 725
≡ 3 (mo 3)

764 = 726
≡ 9 (mo 3)

728 = 727
≡ 3 (mo 3)

7256 = 728
≡ 9 (mo 3)

So the reminer when 7256 is ivie by 3 is 9.

Suppose we now wnt to  n the reminer when 75 is ivie by 47.

We note tht 72
≡ 2 (mo 47)

   ⇒ 74 = (72)2
 ≡ 4 (mo 47)

   ⇒ 78 = (74)2
 ≡ 6 (mo 47)

Now we cn stop becuse if  we squre gin we obtin 76, n 6 > 5.
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We know tht 5 = 8 + 4 + 2 + 

⇒ 75 = 78+4+2+ ≡ 78 × 74 × 72 × 7 (mo 47) 

   ≡ 6 × 4 × 2 × 7 (mo 47)

   ≡ 64 × 4 (mo 47)

   ≡ 7 × 4 (mo 47) 

   ≡ 238 (mo 47) 

   ≡ 3 (mo 47)

Hence the reminer when 75 is ivie by 47 is 3.

You woul hve notice tht in orer to ivie the exponent into 

powers of  2 you cn convert it into  binry number, 

e.g. 5 = 
2 
= 20 + 2 + 22 + 23 =  + 2 + 4 + 8 

We can write the method explained in the above example as an algorithm for 

computing am(mod n):

1 Express m as a sum of powers of 2 (writing m in binary will help).

2 Compute a2 (mod n), a4 (mod n), a8 (mod n) … 

3 Combine the results in steps 1 and 2 to compute am(mod n).

This metho cn be use whenever you wnt to compute reminers 

of  lrge exponents, s in the next exmple.

Example 

Fin the vlue of k ∈ , 0 ≤ k < 3, such tht 55 ≡ k (mo 3).

5 = 00
2

= 25 + 24 + 2 + 20

= 32 + 6 + 2 + 

52 = 25 ≡ −6(mo 3)

54 ≡ 36 (mo 3) ≡ 5 (mo 3) 

58 ≡ 25 (mo 3) ≡ −6(mo 3)

56 ≡ 36 (mo 3) ≡ 5 (mo 3)

532 ≡ 25 (mo 3) ≡ −6(mo 3)

55 ≡ 532 × 56 × 52 × 5 (mo 3) 

≡ (−6) × 5 × (−6) × 5 (mo 3)

≡ 36 × 25 (mo 3) 

≡ 5 × (−6) (mo 3)

≡ −30(mo 3)

≡  (mo 3)

Therefore the reminer is .

Write 51 in binary.

Write 51 as sum of  powers of  2.

Use Theorem 4 to compute remainders for 

powers of  5 up to 32.

Combine results to  nd the required answer.

In the next exmple we use the theorem to show tht the 

speci c i erence of  two numbers is  fctor of   given number.
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Example 

Show tht 39 ivies 748 − 524

748 = 732+6

72 = 289 ≡ 6 (mo 39) 

74
≡ 256 (mo 39) ≡ −7(mo 39) 

78
≡ (−7)2 (mo 39) ≡ 6 (mo 39)

76
≡ −7(mo 39) 

732
≡ 6 (mo 39)

748 = 732+6 = 732 × 76

≡ 6 × (−7) (mo 39) 

≡ −272(mo 39)

≡  (mo 39)

524 = 56+8

52
≡ −4(mo 39)

54
≡ 96 (mo 39) ≡  (mo 39) 

58
≡  (mo 39)

56
≡  (mo 39)

524 = 56+8
≡ 56× 58

 ≡  (mo 39)

Since 748
 ≡ 524 (mo 39) it follows 

tht 39|748 − 524

Write 48 as sum of  powers of  2.

Use Theorem 4 to compute remainders for 

powers of  17 up to 32.

Combine results to obtain 17 48 (mod 39).

Write 24 as a sum of  powers of  2.

Use Theorem 4 to compute remainders for 

powers of  5 up to 16.

Combine results to obtain 5 24 (mod 39).

Investigation

Copy n complete the following tble. Wht o you notice?

k k (mo 3) 2k (mo 3)



2

Check whether the sme is true in the following tbles. Cn you see ny ptterns?

k k (mo 4) 2k (mo 4) 3k (mo 4)



2

3

k k (mo 5) 2k (mo 5) 3k (mo 5) 4k (mo 5)



2

3

4
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k k (mo 6) 2k (mo 6) 3k (mo 6) 4k (mo 6) 5k (mo 6)



2

3

4

5

k k (mo 7) 2k (mo 7) 3k (mo 7) 4k (mo 7) 5k (mo 7) 6k (mo 7)



2

3

4

5

6

You woul hve notice mny i erent ptterns in ech of  these tbles, 

prticulrly within columns. Cn you see ny ptterns within rows? 

Construct similr tbles for (mo n) where n = 8, 9, 0 n . 

Look t ll the tbles constructe n compre those rows which prouce 

the sme number. 

Write  generl rule for ll those rows, e.g. in the  rst tble you woul 

notice tht 2k
≡  (mo 3).

Cn you mke  conjecture?

Pierre de Fermat was the son of a wealthy leather merchant in 17th century 

France. As a young man he attended the universities of Toulouse and 

Orléans. By the early 1630’s he was a fully- edged lawyer. He was a passionate 

mathematician and kept up his work in this  eld as a hobby. He tended to share 

his mathematical work with other mathematicians in France rather than publish 

them. He is renowned for his work known as “Fermat’s Last Theorem” which 

states that the set of equations an + bn = cn are insoluble if n > 2. He wrote this 

statement in the narrow margin of a book, along with the following statement: 

“I have a truly marvelous demonstration of this proposition which this margin is too 

narrow to contain.” This hypothesis continued to baf e mathematicians for three 

whole centuries and although the proof was so elusive, it created many new ideas 

and discoveries in the  eld of mathematics. It was only in 1993, after a full 

decade of seclusion, that Andrew Wiles managed to work out a proof. The proof 

makes use of intricate modern mathematics and could not possibly be the same 

proof that Fermat alludes to in his copy of Arithmetica. We will never know whether 

Fermat had actually proved his proposition. If he had, it would not have been using 

the mathematics that Wiles did, thus the proof is lost forever. Fermat’s Last 

Theorem is not to be confused with the Little Theorem which is explored next.
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In the investigtion on pges 67 n 68 you my hve notice the 

following results.

● a2
≡  (mo 3) 

● a4
≡  (mo 5)

● a6
≡  (mo 7)

● a0
≡  (mo )

This les to  conjecture for the next theorem.

Theorem 7: Fermat’s Little Theorem

If  p is prime n gc (a, p) = , then ap−
 ≡  (mo p). 

Proof:

Consier the following multiples of  a:

a, 2a, 3a,…, ( p − )a 

An alternative but 

equivalent version 

of Fermat’s Little 

Theorem states that 

ap 
≡ a (mod p). It is left 

for you to show that 

the two versions are 

equivalent.

Although Fermat’s 

Little Theorem applies 

only to primes, there 

are some composite 

integers, n, such that 

an 1
≡ 1 (mod n). Such 

integers are called 

Pseudoprimes or 

Carmichael numbers. 

Examples of such 

numbers are 

341 = 11 × 31 and 

561 = 17 × 33.

Suppose tht in this list there re some integers 

 ≤ r < s ≤ p −  such tht ra ≡ sa (mo p).

Since gc (a, p) =  this mens tht r ≡ s (mo p) cnnot be true

since  ≤ r < s ≤ p − . All the multiples in the list must be istinct 

n non-zero n therefore when we consier the reminers 

when ech is ivie by p they must give resiues , 2, 3, …, p −  

but not necessrily in tht orer.

⇒ a × 2a × 3a × …× ( p − )a ≡  × 2 × 3 × …× (p − )(mo p)  

⇒ ( p − )! × ap−
 ≡ ( p − )!(mo p) 

⇒ ap−
≡  (mo p) Q.E.D.

The following exmples illustrte how this theorem is use to 

compute powers moulo p. 

Residue is another 

term for remainder. So 

given a ≡ b (mod n), b

is the residue when a

is divided by n

Example 

Show tht 5450
≡  (mo ).

5540 = (50)54

50
≡  (mo ) ⇒ (50)54

≡  (mo ) 

Notice that 5540 = (510)54.

Apply Fermat’s Little Theorem.
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Example 

Fin the reminer when 52372 is ivie by 3.

52 = 29 n 372 = 3 × 2 

⇒ (29)372 = 29×3×2 = (22)9×3

52372 = (22)279
≡  (mo 3) 

Reduce 512 into prime factors.

Apply Fermat’s Little Theorem.

Example 

Fin the reminer when 347 is ivie by 23.

347 (mo 23)

≡ 344+3 (mo 23) 

≡ 344 × 33 (mo 23)

≡ (322)2 (mo 23) × 27 (mo 23)

≡  × 4 (mo 23)

⇒ the reminer when 347 is ivie by 23 is 4

23 is a prime number so simplify the power to 

include 22.

Apply Fermat’s Little Theorem.

Example 

a Use Fermt’s Little Theorem to compute 3302 (mo 5) n 3302 (mo 7). 

b Use your results n the Chinese Reminer Theorem to  n 3302 (mo 35).

a 3302 = (34)75 × 32

 3302 (mo 5)

≡ (34)75 × 32 (mo 5)

≡ 4 (mo 5)

 3302 = (36)50 × 32

 3302 (mo 7)

≡ (36)50 × 32 (mo 7)

≡ 2 (mo 5)

b x ≡ 4 (mo 5)

x ≡ 2 (mo 7)

M = 35

 7 ≡ 2 (mo 5)

 49 ≡ 4(mo 5)

 5 ≡ 5 (mo 7)

⇒5 ≡  (mo 7)

⇒30 ≡ 2 (mo 7) 

 49 + 30 = 79 ≡ 9 (mo 35) 

 Therefore 3302 (mo 35) = 9 

Rewrite 302 in terms of  multiples of  4.

Apply Fermat’s Little Theorem and simplify.

Rewrite 302 in terms of  multiples of  6.

Apply Fermat’s Little Theorem and simplify.

Write the two congruences with x and use the 

Chinese Remainder Theorem to solve.

Multiply by 7 to obtain the required 

congruence
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Example 

Use Fermt’s Little Theorem to solve the liner congruence 3x ≡ 4 (mo ).

3x ≡ 4 (mo )

30x ≡ 39 × 4 (mo )

⇒x ≡ (32)4 × 3 × 4 (mo )

⇒x ≡ (−2)4×(mo )

⇒x ≡ 5 (mo ) 

Generl solution is x = n + 5.

Since 11 is prime and gcd ( 3, 11) = 1 

multiply both sides by 39.

Use Fermat’s Little Theorem.

Exercise 2E

1 a Fin the vlue of  k ∈ , 0 ≤ k < 8, such tht 365
≡ k (mo 8).

b Fin the vlue of  k ∈ , 0 ≤ k < 31, such tht 31025
≡ k (mo 31).

c Fin the vlue of  k ∈ , 0 ≤ k < 37, such tht 6543
≡ k (mo 37).

2 Fin the reminer when 562 is ivie by 13.

3 Compute ech of  the following.

 a 128350 (mo 11) 

 b 34443233 (mo 17) 

4 Use Fermt’s Little Theorem to solve these liner congruences.

 a 6x ≡ 5 (mo 13) 

 b 5x ≡ 2 (mo 7)

 c 7x ≡ 8 (mo 11)

5 Use Fermt’s Little Theorem to  n the reminer when 11158 + 4 

is ivie by 13.

6 Show tht 51 ivies 1359 − 1068.

7 Show tht if  23|a110 − 1 for ll a ∈ +, gc (a, 23) = 1.

8 a Use Fermt’s Little Theorem to compute 

32003 (mo 5), 32003 (mo 7) n 32003 (mo 11).

 b  Use your results from prt a n the Chinese Reminer 

Theorem to  n 32003 (mo 385).
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Review exercise

EXAM-STYLE QUESTIONS

1 a Which integers leve  reminer of  1 when ivie by 2, 

 n lso  reminer of  1 when ivie by 5?

 b Fin the integers which re ivisible by 3 but leve  reminer 

 of  1 when ivie by 5.

2 a Show tht 14 is  fctor of  n7 − n for ll n ∈ 

 b Use the result 2015 = 201 × 10 + 5 to show tht 

 22015
≡ 10 (mo 11).

 c Fin 22015 (mo 7) n 22015 (mo 13).

3 a Use the Euclien lgorithm to express gc (129, 1001) 

 in the form 129m + 1001n, where m, n ∈ 

 b Fin the lest positive solution of  129x ≡ 1 (mo 1001).

 c Fin the generl solution of  129x ≡ 1 (mo 1001).

 d Fin the solution set of  129x ≡ 1 (mo 1002).

4 a Fin the generl solution for the following system of  congruences.

  x ≡ 1 (mo 5)

  x ≡ 2 (mo 11)

  x ≡ 1 (mo 13)

 b Fin ll the vlues of  x such tht 1000 < x < 3000.

5 a Consier the integers n = 1793 n m = 2981, given in bse 10.

 i Express n n m in bse 11.

 ii Hence show tht gc (1793, 2981) = 11.

 b A list L is me up of  n + 1 istinct positive integers. 

 Prove tht t lest two members of  L leve the sme 

 reminer on ivision by n

 c Consier these simultneous equtions:

  3x + y + 7z = a

2y + z = b

4x + 2z = c

 Show tht 3a + b − c = 0 (mo 5).

6 a Stte two equivlent versions of  Fermt’s Little Theorem 

 n show tht they re equivlent. 

 b  Hence or otherwise show tht in bse 10, the lst igit of  ny 

integer n is lwys equl to the lst igit of  n5

 c Show tht this result is lso true in bse 15.
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7 a Express 109 368 s  prouct of  primes.

 b Prove by inuction tht if  N is n o number, N n ≡ 1 (mo 2).

 c Use the result of  prt b n Fermt’s Little Theorem to 

 show tht 38|(719 + 3119). 

8 Fermt’s Little Theorem sttes tht uner certin conitions 

ap 
≡ a (mo p).

a Show tht this sttement is equivlent to a p−1
 ≡ 1 (mo p).

b Show tht this result is not true when a = 3, p = 8 n 

stte which of  the conitions is not stis e.

c Fin the smllest positive vlue of  k stisfying the 

congruence 332
≡ k (mo 8).

9 a Given tht a ≡ b (mo n) n c ≡ d (mo n), prove tht 

a + c ≡ b + d (mo n).

 b Hence solve the system 
 


 

13 8 7(mod15)

5 22 8(mod15)

x y

x y

 c Show tht x 41 − x + 2 ≡ 0 (mo 41) hs no solutions.

10 a Stte Fermt’s Little Theorem.

 b Given tht p is n o positive integer:

  i Show tht k pp

k

p



 
1

0(mod )

  ii  Given tht k n pp

k

p



 
1

1

(mod ) where 0 ≤ n ≤ p − 1,

 n the vlue of  n. 
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Chapter  summary
De nition: If  a ∈ n n ∈ +, n > , then the remainder when a is ivie by n is 

enote by r ≡ a(mo n).

De nition: If  a, b ∈  n n ∈ +, n > , then a is congruent to b moulo n

if  n ivies a − b. We use the following nottion: a ≡ b (mo n) ⇔ n| a − b 

Theorem 1:

Given n ∈+, a ≡ b (mo n) ⇔ a = b + kn, where k ∈.

Theorem 2:

If  n ∈+ n a, b, c n d ∈, a ≡ b (mo n) n c ≡ d (mo n) then:

i a + c ≡ b + d (mo n)

ii ac ≡ bd (mo n)

Corollary:

i a ≡ b (mo n) ⇒ ka ≡ kb (mo n)

ii a ≡ b (mo n) ⇒ a k ≡ b k (mo n)

De nition: A congruence of  the form ax ≡ b (mo n) where a, b ∈, n ∈+

n x ∈ is clle  linear congruence.

Theorem 3:

If  a, n ∈+, n >  where a n n re reltively prime, it follows tht n inverse 

of  a (mo n), enote by ā, exists such tht āa ≡ aā ≡  (mo n), ā ∈+, ā < n. 

Furthermore this inverse is unique moulo n. 

Theorem 4:

For ll n, k ∈+, n > k, na − k (mo n) = −k (mo n).

The Pigeonhole Principle:

If  m pigeons occupy n pigeonholes n m > n, then t lest one pigeonhole must be 

occupie by more thn one pigeon.

The Generalized Pigeonhole Principle:

If  n pigeonholes re occupie by kn +  or more pigeons, where k ∈+, then t lest one 

pigeonhole must be occupie by k +  or more pigeons.
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Theorem 5: The Chinese Remainder Theorem

Given the system of  liner congruences: 

x ≡ a

(mo m


)

x ≡ a
2
(mo m

2
)

x ≡ a
3
(mo m

3
)

.

.

.

x ≡ a
n
(mo m

n 
)

If  m

, m

2
, m

3
, ..., m

n
 re pirwise reltively prime positive integers, there exists  unique 

solution moulo M where M = m

 × m

2
 × m

3
 × ... × m

n
.

In other wors, there is  prticulr solution 0 ≤ x
0
 < M n  generl solution given by 

x ≡ x
0
(mo m) + kM.

Theorem 6:

Given tht a ≡ b (mo n) where a, b ∈ n n ∈+ then a m ≡ b m (mo n) for ll m ∈+.

Theorem 7: Fermat’s Little Theorem

If  p is prime n gc(a, p) = , then a p−
≡  (mo p).

An lterntive equivlent version sttes tht a p ≡ a(mo p).
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Recursive 
patterns3

CHAPTER OBJECTIVES:

10.11 Recurrence relations. Initial conditions, recursive de nition of a sequence. 

Solution of  rst- and second-degree linear homogeneous recurrence relations with 

constant coef cients. The  rst degree linear recurrence relation u
n
 = au

n−1
 + b

 Modelling with recurrence relations.

Before you start

1 Find terms of  a sequence de ned 

recursively, e.g. the  rst four terms of  the 

sequence de ned by:

u

u u n
n n

0

1

1

2 3



  






, 

are 1, 5, 17 and 53.

2 Recognize the  rst term and common 

di erence of  an arithmetic sequence given 

its general term, e.g. if  u
n
 = 2n + 5 

for n ∈, the  rst term is 5 and the 

common di erence is 2.

3 Recognize the  rst term and common ratio 

of  a geometric sequence given its general 

term, e.g. if  u
n
 = 22n+1 for n ∈+, the  rst 

term is 8 and the common ratio is 4.

4  Find the sum S of  a convergent geometric 

series, given its general term, e.g. 

 if  u
n

n

 












3
1

4

1

 for n ∈+ then

 

3

116

41
1

4

S

1  Find the  rst four terms of  each sequence.

a
u

u u n
n n

0

1

2

5



  





, 

b
u

u u n
n n

0

1

4

2 1



  





( ), 

2  State the  rst term and the common 

di erence of  these arithmetic sequences.

 a u
n
 = −2n + 1 for n ∈

 b u
n
 = n − 1 for n ∈+

3  State the  rst term and common ratio of  

the geometric sequence u
n
 = 2·3n+1 for n ∈+

4 Find the sum of  the convergent geometric 

series de ned by u
n

n

 












5
1

2

2 1

 for n ∈+
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Modelling and solving problems using sequences

Planning and predicting are crucial concepts when it comes to Business 

and Management. Discrete Mathematics provides useful tools to 

specialists in these areas, allowing them to create and analyze models and 

make informed decisions from them. In general, analyzing huge amounts 

of  data and producing models is a di  cult task even for the most able 

mathematicians specialized in this area. In this chapter we are going to 

look at situations that will give you an idea about the techniques involved 

and will allow you to appreciate the role of  Discrete Mathematics in the 

development of  other sciences, speci cally Economics. These techniques 

will enable you to solve  nancial problems. These  nancial decisions are 

judgments you can make about your life and the future when you have 

the choice of  investing in stocks, major appliances, a house, a car or 

starting a savings account. In the end they may determine how well 

you live!

Xunyu Zhou, developer of a rigorous mathematical basis for behavioural 

economics at Oxford said: ‘Financial mathematics needs to tell not only 

what people ought to do, but also what people actually do. This gives rise to a 

whole new horizon for mathematical  nance research: can we model and 

analyse the consistency and predictability in human  aws so that such  aws 

can be explained, avoided or even exploited for pro t?’.

(Quote from http://plus.maths.org/content/what- nancial-mathematics)
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3.1 Recurrence relations

As part of  the core course you studied some recurrence relations 

when the recursive de nition of  a sequence was introduced. For 

example, you studied arithmetic and geometric sequences that 

are characterized by simple recurrence relations:

● If  {u
n
} is an arithmetic sequence then it can always be de ned by a 

recurrence relation of  the form 



  

1

1
, 1

n n

u a

u u d n

 for constants a, d ∈. 

● If  {u
n
} is a geometric sequence then it can always be de ned by a 

recurrence relation of  the form 
1

1
, 1

n n

u a

u u r n




  
 for constants a, r ∈\{0}, r ≠ .

In general, a recurrence relation establishes a clear rule relating 

terms of  sequences, (usually) consecutive terms and includes an 

initial condition that allows you to calculate speci c terms of  

the sequence.

For example, 
u

u u n
n n

1

1

3

2 1



  



 ,

  de nes the sequence 3, 5, 7, …. 

In this case, the initial condition is u

 = 3; the  rst term 

of  the sequence is 3. For another example, the recurrence 

relation 
v

v v n
n n

1

1

3

2 1



 



 ,

  de nes the sequence 3, 6, 2, 24, …, 

but this time the sequence is geometric with  rst term 3 and 

common ratio 2. In both cases, you know how to  nd 

expressions for the general terms of  these sequences: 

u
n
 = 2n +  and v

n
 = 3 × 2n−, for n ∈+

However, it is not always straightforward to deduce a 

general formula for the n th term of  a sequence as the 

following investigation shows you. 

Leonardo da Pisa 

(1175–1250) ala 

Fibonacci is known mostly 

because of the famous 

sequence that bears his 

name, and that is simply the 

solution of a problem that he 

included in his book Liber 

Abaci. However, the main 

contribution to mathematics 

of Leonardo da Pisa was the 

introduction of the Hindu-Arab 

number system in Europe.
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Investigation on Fibonacci numbers

The Fibonacci numbers , , 2, 3, 5, 8, 3, 2, … make up a famous 

mathematical pattern characterized by a simple recurrence relation: 

F

 = , F

2
 =  and F

n
 = F

n–
 + F

n–2
, n ∈+, n > 2.

Fibonacci numbers also provide a simple way of  approximating Φ, 

the Golden Ratio:

Just take the quotient of  two consecutive Fibonacci numbers:

1 2 3 5 8 13

1 1 2 3 5 8
1; 2; 1.5; 1.66 ...; 1.6; 1.625; ...     

a Use a spreadsheet to generate the sequence 

of  the quotients of  consecutive Fibonacci 

numbers and calculate the relative error 

between each term and the Golden Ratio 

whose exact value is given by  
1 5

2
b Repeat part a for other Fibonacci type 

sequences like 5, 3, 8, , 9, … which 

di er from the original one in the choice 

of  the  rst two terms. 

In mathematics you often deal 

with geometric sequences that are 

characterized by the recurrence relation 
F

F

n

n 1

 = constant. You can generate as many 

geometric sequences as you wish: just 

choose the starting term and the constant 

(or common ratio) and start multiplying 

each term by the chosen constant! 

However, there is just one Fibonacci 

type sequence that is also a geometric 

sequence with positive terms. This is 

called the Golden sequence:

1, Φ, 1 + Φ, 1 + 2Φ, 2 + 3Φ, 3 + 5Φ, …

c Using the fact that Φ is a solution of  

the equation x2 – x −  = 0, show that 

Φ2 = Φ + .

d Hence show that Φ3 = Φ(Φ + ) = 2Φ + .

e Explain why the Golden sequence is a geometric 

sequence with common ratio Φ, i.e. the Golden 

sequence can be written as , Φ, Φ2, Φ3, …

There is another sequence with the same properties but its terms 

are alternately positive and negative: just replace Φ by the negative 

of  its reciprocal 


  
1 1 5

2
 to obtain the reciprocal Golden 

sequence: , Φ′,  + Φ′,  + 2Φ′, 2 + 3Φ′, 3 + 5Φ′, ….

f Show that this sequence is also geometric with common 

ratio Φ′, i.e. the reciprocal Golden sequence can be written 

as , Φ′, ( Φ′ )2, ( Φ′ )3, …

(Hint: use the same method used in part c, as   


1
 is also solution of  x 2 – x − 1 = 0.)
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The investigation on Fibonacci numbers dealt with a second-degree 

recurrence relation, u
n+

 = u
n
 + u

n−
, as it involves three consecutive 

terms of  the sequence. To determine the solution – the Fibonacci 

sequence – you needed two initial conditions, for example u

 = u

2
 = , 

or u
0
 = 0 and u


 = .  

De nition

A recurrence relation of  order k is an equation that de nes each 

further term of  a sequence as a function of  k preceding terms, i.e. 

 …,  1, .n n n kf u uu

In general, as you will see in the next sections, the number of  initial 

conditions to determine the general term of  a sequence de ned by 

a recurrence relation is given by its degree. So far you have worked 

with arithmetic and geometric sequences de ned by  rst degree 

recurrence relations and one initial condition. 

Example  shows you that sometimes more complicated recurrence 

relations represent, in fact, simple sequences. In this example we also 

deduce a general expression for the solution of  the recurrence relation 

and prove it using the principle of  strong mathematical induction 

you studied in Chapter .

Recurrence relations 

of order k are also 

called recurrence 

relations of degree k

The Golden sequence and the reciprocal Golden sequence can also 

be seen as sequences of  linear expressions in Φ whose coe  cients 

of  both the independent term and the term in Φ are exactly the 

Fibonacci numbers 0, , , 2, 3, 5, 8,…. (adding a starting term 0) as:

0 + Φ,  + Φ,  + 2Φ, 2 + 3Φ, … and this means that 

F
n−

 + F
n
Φ = Φn and F

n−
 + F

n
Φ′ = (Φ′ )n, n ≥ .

g Solve both equations simultaneously to obtain a general 

formula for Fibonacci numbers 
     

 
( )

5 5

n n n n

nF
 

known as Binet’s formula. 

This formula was 

derived by 

Jacques Binet in 1843, 

although the result was 

known to Euler, Daniel 

Bernoulli, and De 

Moivre more than a 

century earlier. 
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Example 

Consider a sequence {u
n
} de ned by the recurrence relation u

n
 = 3u

n–2
 + 2u

n−
, n ∈+, 

n ≥ 3, with u

 = −  and u

2
 = .

a Determine the  rst six terms of  the sequence.

b Hence, conjecture a formula for the general term of  the sequence.

c Use the principle of  strong mathematical induction to prove your conjecture.

a −, , −, , −, 

Example 1

BA C D

2

3

4

5

6

1

–1

1

–1

1

2

3

4

5

6
B3 =3•b1+2•b2

1.1

n un

b u
n
 = (−)n, n ∈+

c Let P
n
: u

n
 = (−)n, n ∈+.

 When n = , 

u

 = (−)

⇒ u

 = − ∴ true.

 When n = 2,  

u
2
 = (−)2

⇒ u
2
 =  ∴ true.

 Therefore P

 and P

2
 are true.

Assume that P
i
 is true for all  ≤ i ≤ k. 

When n = k + , k > .

u
k+

 = 3u
k–

 + 2u
k

= 3 × (−)k– + 2 × (−)k

= (−)k– × (3 + 2 × (−))



1 2

1

( 1) ( 1)k
   

= (−)k –+2

= (−)k+

 Therefore P
n
 is true for n = k + .

Since P

 and P

2
 are true and it was shown that 

given P
i
 is true for all  ≤ i ≤ k, P

k+
 is also 

true, by strong mathematical induction it 

follows that P
n
 is true for all n ∈+.

You may use a GDC spreadsheet to  nd 

the terms of  the sequence.

Notice that this sequence is a geometric 

sequence with  rst term and common ratio 

both equal to −1.

State the claim that you want to prove.

Prove that the claim is true for the two 

initial values. We need both values since 

this is a recurrence relation involving two 

previous terms.

Make the assumption (inductive step).

Prove that the statement is true for 

n = k + 1.
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Example 2 is about a recurrence relation whose solution is the 

di erence between two geometric sequences. To prove it we will 

again use the principle of  strong mathematical induction. 

Example 

Show that if  u
n
 = 5u

n–
 − 6u

n−2
, n ≥ 2, with u


 =  and u

2
 = 5, then for all n ∈+, u

n
 = 3n – 2n. 

Proof:

P
n
 : u

n
 = 3n – 2n

When n = ,   3 – 2 =  = u


When n = 2,   32 – 22 = 5 = u
2

Therefore P

 and P

2
 are true.

Assume that P
n
 is true for all  ≤ i ≤ k.

When n = k + , k > 

u
k+

 = 5u
k
 − 6u

k−

 = 5(3k – 2k) – 6(3k− – 2k−)

 = 5 × 3k – 5 × 2k – 2 × 3k + 3 × 2k

 = 3 × 3k – 2 × 2k

 = 3k+ − 2k+

Therefore P
n
 is true for n = k + .

Since P

 and P

2
 are true and it was shown that 

given P
n
 is true for all 2 ≤ n ≤ k, P

k+
 is also true, 

it follows by the principle of  strong mathematical 

induction that P
n
 is true for all n ∈+.

State the claim you want to prove.

Prove that the claim is true for the two 

initial values. We need both values since 

this is a recurrence relation involving the 

two previous terms.

Make the assumption (inductive step).

Prove that the statement is true for 

n = k + 1.

Exercise 3A

1 Use the principle of  strong mathematical induction to prove that given 

 u

 = 3, u

2
 = 5 and, for all n ≥ 2, u

n+
 = 3u

n
 – 2u

n−
, then u

n
 = 2n + .

2 Consider the recurrence relation de ned by a
1
 = 2 and, for all 2

1
1,

n n
n a a


  .

 a Find the  rst 5 terms of  the sequence.

 b Hence, conjecture a formula for the general term of  the sequence.

 c  Use the principle of  strong mathematical induction to prove your conjecture.
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3 Use the principle of  strong mathematical induction to show that

given a

 = 900,  a

2
 = 1780 and, for all n ≥ 2, a

n+
 = 2a

n
− a

n−
 + 10⋅2n, 

then a
n
 = 840n + 20 + 20⋅2n

Questions  to  involve the Fibonacci sequence de ned by

 F
0
 = 0, F


 = , and F

n
 = F

n–
 + F

n−2
 for n ∈+, n ≥ 2

4 Show that F F
i n

i

n

 




 2 1

0

, for all n ∈+

5 a Find the values of  F
n
 for 2 ≤ n ≤ 8.

 b Show that for 1 5 2

0

1   


n F F F
i

i

n

n n
,

 c Use the principle of  strong mathematical induction to prove that 

for all n ∈+, F F F
i

i

n

n n

2

0

1



  

6 Use Binet’s formula 
     

 
( )

5 5

n n n n

n
F

 
to show that 

 a F F F
n n n

n
   

 2 1

2 1( ) b lim
n

n

n

F

F

 1 

3.2  Solution of fi rst-degree linear recurrence relations 
and applications to counting problems

In this section you are going to learn a method to  nd the general 

term of  a sequence that satis es a recurrence relation of  the form 

u
n
 = a · un–

 + f  (n) where a ∈ \{0}, n ∈+ and f  is a function of  n of  the 

form f  (n) = b + cn, for b, c ∈ {}\{0}. 

These recurrence relations can be classi ed into:

i homogeneous  rst-degree recurrence relations if  b = c = 0

ii inhomogeneous  rst-degree recurrence relations otherwise.

Let’s look at case i  rst, since you have already dealt with these types 

of  sequences: they are geometric sequences. Let’s deduce again 

their general term and focus on the process because we will need to 

apply it to case ii: 

u
n
 = a · u

n–
 = a·(a · u

n−2
) = a·(a·(a · u

n−2
)) = ... = an− · u



which means that the general term is u
n
 = an− · u



Although you may be 

asked to conjecture 

general term formulas 

for any recurrence 

relation and provide 

proof using strong 

mathematical induction, 

only for special  rst- 

and second-degree 

recurrence relations are 

you required to use

systematic methods to 

deduce these solutions. 

For this reason, in the 

following sections we 

will cover some types 

recurrence relations of 

 rst- and second-degree.

Some texts may refer 

to inhomogeneous 

equations as 

nonhomogeneous. It is 

also usual to refer to 

 rst-degree recurrence 

relations as  rst-order 

recurrence relations.
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We proceed now to the general case ii but this time we are going to 

simplify the notation to make the pattern clear:

u
n
 = a ⋅ u

n−
 + f  (n), i.e.

u
n
 = a · (a ⋅ u

n−2
 + f  (n − 1)) + f  (n) = a2 ⋅ u

n−2
 + a ⋅ f  (n − 1) + f  (n)

Proceeding with the same method:

u
n
 = a3 ⋅ u

n−3
 + a2 f  (n − 2) + a ⋅ f  (n − 1) + f  (n)

Eventually, if  we continue the process we will obtain

u a u a f a f a f n f nn
n n n

          
  1

1
2 32 3 1( ) ( ) ... ( ) ( )

or, using sigma notation,

u a u a f n kn
n k

k

n

    



1

1

0

2

( )

If  the initial condition is given in terms of  u
0
, then

u
n
 = an u

0
 + an– f  () + an–2 f  (2) + . . . + a f (n – ) + f  (n)

or, using sigma notation,

u a u a f n kn
n k

k

n

    


0

0

1

( )

This formula shows that the solution of  the recurrence relation 

depends on a summation problem. This is a di  cult problem and 

its general scope goes beyond the requirements of  the Mathematics 

HL syllabus. We will therefore focus instead on particular cases and 

explore their applications in solving counting problems.

Case 1: f  (n) = b, i.e. u
n
 = a · u

n–
 + b. 

The general solution is u
n
 = an− · u


 + b · ( + a + a2 + ... + an−2). 

Using the formula for the sum of  consecutive terms of  a geometric 

sequence, we obtain = ⋅ + ⋅

1
1

1

1

1

n
n

n

a

a
u a u b

The solution for Case  is of  the form 1= · +n

nu A a B. To  nd the 

general solution, we can use the recurrence relation, calculate the 

value of  u
2
 and then use the values of  the  rst two terms to determine 

the values of  A and B. 

This alternative 

method to solve 

Case 1 can be used 

to solve recurrence 

relations when you 

know the form of the 

solution and just need 

to  nd the values of 

some parameters 

using the initial 

conditions given.

Example 3 shows you three methods that you can use to solve this 

type of   rst-degree recurrence relation.

Depending on the 

initial condition given 

we may need to relate 

u
n
 with u

1
 or with u

0



Chapter 3 85

Example 

Solve the recurrence relation u
n
 = 2u

n–
 +  with initial condition u


 = .

Method I

u un n  2 11

        2 2 1 1 2 2 12
2

2( )u un n

          2 2 1 2 1 2 2 2 12
3

3
3

2( )u un n

…

       2 2 2 2 11
1

2 2

1

n n

n

u ...

sum of  consecutive terms of 
a ggeometric progression

  

      2 1 2 2 11 12 1

2 1

1

n n

n

= 2n − 

Method II

The solution is:

u
n

n

n

   2 1 11 2 1

2 1

1

   2 2 11 1n n

    2 2 1 2 11n

n

n
u

Method III

The solution is:

  12n

n
u A , , .A B

2 1 22 1 3u u u= ⋅ +  = since u

 = 

1 2

3 2

2

1

0

1

  

  




 











A B

A B

A

B

∴ u
n
 = 2n − .

Apply the recurrence relation n − 2 times 

to obtain an expression for u
n
 in terms of  

the  rst term.

Use u
1
 = 1 and the formula for sum of  

consecutive terms of  a geometric 

progression with  rst term 1 and common 

ratio 2 to obtain the general formula 

required. 

Use = ⋅ + ⋅

n 1

n 1

n 1

a 1

a 1
u a u b

where a = 2, b = 1

and simplify the expression.

The solution is of  the form

 n 1

n
u A a  with a = 2.

Use the recurrence relation to calculate u
2
 .

Use u
1
= 1 and u

2
 = 3 to determine the 

values of  A and B.

The recurrence relation in Example 3 is the solution of  a famous 

counting problem: the n-ring Tower of  Hanoi puzzle.

According to the legend of  the Tower of  

Hanoi, temple priests are to transfer a 

tower consisting of  64 fragile disks of  gold from 

one part of  the temple to another, one disk at 

a time. The disks are arranged in order, no two 

of  them the same size, with the largest on the 

bottom and the smallest on top. Because of  

their fragility, a larger disk may never be placed 

atop a smaller one, and there is only one 

intermediate location where disks can be 

temporarily placed. The legend says that before 

the priests complete their task the temple will turn into dust and the world will end. How 

long do they have to complete the task if  it takes them one minute to transfer each disk?
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Investigation

Try the Tower of  Hanoi puzzle and convince yourself  that the recurrence relation 

u
n+

 = 2u
n
 +  with u


 =  provides a model to solve this problem.

Case 2: a = 

As a =  and f  (n) = b + cn, the general solution 
1

0

0 ( )
n

k

n k
nu a u a f n k

=

= ⋅ + ⋅ −  can be simpli ed 

to 
1 1

0 0

0 0( ( ) ) ( )
n n

k k

n nu u c n k b u u b cn ck
− −

= =

= + ⋅ − +  = + + −  . This means that we can  nd the 

general term of  the sequence {u
n
} simply by applying our knowledge of  arithmetic 

progressions, as shown in Examples 4 to 6.

Example 

Solve the recurrence relation u
n
 = u

n–
 + n with initial condition u

0
 = .

Method I

The solution is u n kn

k

n

  


1
0

1

( ):

 u nn

n n n
   

  
1

1

2

2

2

2

Method II

u
n
 = u

n−
 + n

= u
n−2

 + (n − ) + n

= u
n−3

 + (n − 2) + (n − ) + n


0

( 1)1
2

1 ... ( 2) ( 1)

n n

u n n n

+

= + + + − + − +


 
 

un

n n2 2

2

Use u u c n k bn

k

n

    


0

0

1

( ( ) ) where b = 0, c = 

Use S nn

a an 
0 1

2
 where a

k
 = n − k.

Use the recurrence relation to explore the pattern and 

obtain a formula for u
n
 in terms of  n.

Note that you obtain an arithmetic series with n terms, 

 rst term 1 and last term n.

When you conjecture a formula like in 

Method II, you may be asked to prove it 

using strong mathematical induction.

The recurrence relation in Example 4 is a special one as it models 

another well-known counting problem:

Suppose that we draw n straight lines on a piece of  paper so that every 

pair of  lines intersects, but no three lines intersect at a common point. 

Into how many regions do these n lines divide the plane? 

Let’s investigate this problem by examining the situation for small values of  n. 

2

1

23

4
1

2

6

7

3

4

5

1

n =     n = 2    n = 3
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Investigation

Explore the intersecting lines problem using dynamic geometry software and convince 

yourself  that this problem is modelled by the recurrence relation u
n+

 = u
n
 + n with u

0
 = .

Extension: General case u
n
 = a · u

n–
 + b + cn when a ≠ 0 and c ≠ 0

We saw that the solution is of  the form u a u a b c n k
n

n k

k

n

     


0

0

1

( ( ))

but it is very di  cult to obtain an explicit expression for the general term 

unless you are guided or provided with extra information that allows you 

to determine a simpli ed expression for such a sum. 

An alternative approach to this type of  problem and a more general 

method is the following:

Rewrite the recurrence relation in the form u
n

− a · u
n–

 = b + cn and 

consider the auxiliary recurrence relation v
n 
− a ⋅ v

n−
 = 0 (i.e. v

n
 = a ⋅ v

n−
). 

This homogeneous recurrence relation has general solution v
n
 = k ⋅ an

as we showed before. The general solution of  the recurrence relation 

u
n
 = a · u

n–
 + b + cn is of  the form u

n
 = k ⋅ an + An + B where k, 

A and B are constants to be determined.

The next example shows you how to apply this alternative method. 

An auxiliary 

recurrence relation 

is a homogeneous 

recurrence relation 

that we use to tackle 

problems involving 

more complex 

recurrence relations.

Example 

Consider the recurrence relation u
n
 = 2u

n–
 + n + , n ≥  with u

0
 = −1.

a  Write down the general solution of  the corresponding homogeneous equation 

v
n
 = 2v

n−1
.

b  Determine the values of  A and B in p
n
 = An + B  such that the expression 

is a solution of  the recurrence relation u
n
 = 2u

n–1
 + n + 1. 

c  Hence write down the solution of  the recurrence relation u
n
 = 2u

n–1
 + n + 1, n ≥ 1 

with u
0
 = −1.

a The solution is v
n
 = k ⋅ 2n, k ∈.

b p
n
 = An + B ⇒ p

n−
 = A(n − 1) + B

p
n
 = p

n−
 + n + 1 

An + B = 2(A(n − 1) + B) + n + 1

An + B = (2A + 1)n + (−2A + 2B + 1)

∴ A = −1 and B = −3

p
n
 = −n − 3

c The general solution is u
n
 = k ⋅ 2n − n − 3.

u
0
 = −1 ⇒ −1 = k ⋅ 20 − 0 − 3 ⇒ k = 2

∴ u
n
 = 2n+ − n − 3

The solution of  v
n
 = a ⋅ v

n−1
is v

n
 = k ⋅ an.

The general solution of  the recurrence relation 

u
n
 − a · u

n–1
 = b + cn is of  the form 

u
n
 = k ⋅ an + An + B where k, A and B are 

constants to be determined by substituting 

p
n
 = An + B and p

n−1
 = A(n − 1) + B into the 

recurrence relation.

Use initial condition to determine the value of  k .
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Analyze Example 5 carefully. Note that the solution of  the 

inhomogeneous recurrence relation u
n
 − a · u

n–
 = b + cn is obtained 

by determining the solution v
n
 = k ⋅ an of  the corresponding homogeneous 

recurrence relation v
n

− a ⋅ v
n−

 = 0 and then adding a particular solution 

p
n
 = An + B where A and B are constants that can determined by 

substituting p
n
 = An + B into the recurrence relation u

n
 − a · u

n–
 = b + cn. 

Therefore the solution of  this inhomogeneous recurrence relation is 

of  the form 


   
n

n

n n
v p

u k a An B


The next example shows you how to apply this method e  ciently.

Example 

Solve the recurrence relation u
n
 = 3u

n−
 + 4n + 2, n ≥ 1, with initial condition u

0
 = .

Consider the auxiliary homogeneous 

recurrence relation v
n
 = 3 ⋅ v

n−
 whose solution 

is v
n
 = k ⋅ 3n.

Consider p
n
 = An + B.

An + B = 3· (A(n − ) + B) + 4n + 2

An + B = (3A + 4) n + 3B – 3A + 2

∴ A = 3A + 4 ⇒ A = −2 and 

B = 3B + 3A + 2 ⇒ B = −4

Therefore the solution is of  the form

u
n
 = k ⋅ 3n − 2n − 4

u
0
 = 1 ⇒ 1 = k ⋅ 30 − 2 × 0 − 4 ⇒ k = 5

u
n
 = 5 ⋅ 3n − 2n − 4

v
n
 = k ⋅ an is the solution of  the corresponding 

homogeneous recurrence relation v
n
 = a ⋅ v

n−1

Substitute p
n
 = An + B into u

n
 = 3u

n–
 + 4n

+ 2 to determine the values of  A and B.

The solution is the form


   

n

n

n n
v p

u k a An B


Use the initial condition to  nd the value of  k.

Note that you can solve inhomogeneous recurrence relations of  the form 

u
n
 = a · u

n–
 + f  (n) using the method shown in the previous examples only when 

f  (n) = b + cn ; for other inhomogeneous recurrence relations where f  is not 

a linear function of  n, the form of  the particular solution needs to be given.

Exercise 3B

1 Solve the recurrence relations.

a u
n
 = 3u

n−1
− 2 with u

1
 = 2 b u

n
 = 2u

n−1
− 1 with u

1
 = 3

c u
n
 = −u

n−1
 + 2 with u

0
 = 2 d u

n
 = −2u

n−1
 + 3 with u

0
 = −1

2 Solve the recurrence relations.

a u
n
 = 2u

n−1
 + 3n + 1 with u

1
 = 1

b u
n
 = 3u

n−1
 + n + 1 with u

1
 = 2
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EXTENSION QUESTIONS

3 Consider the recurrence relation u
n
 = u

n−1
 + 2n − 1 with initial 

condition u
0
 = 1

a Show that ( ( ) )2 1 2

0

1

n k n

k

n

  


 , n ∈ +. 

Questions 3-8 require you 

to combine knowledge 

of different topics and 

follow the guidance given 

to  nd the solution of 

the recurrence relations. 

These type of recurrence 

relations are not explicitly 

mentioned in the syllabus 

and you are not required 

to learn any general 

method to tackle them.

b Find the general solution of  the recurrence relation.

c Hence  nd an expression for u
n−1

d Verify that your answer to part b is correct by substituting the 

 expressions for u
n
 and u

n−1
 into the recurrence relation given.

4 a Use the principle of  mathematical induction to 

show that k
n n n

k

n

2 1 2 1

61


 




( )( )

b Hence, solve the recurrence relation u
n
 = u

n−1
 + 3n2 with u

1
 = 10

5 Use the substitution v u
n n


2 to solve the recurrence relation 

u u
n n

2

1

2 1   with u
1
 = 1

6 Given n distinct objects, let p
n
 denote the number of  possible 

arrangements (or permutations) of  these objects if  displayed 

in a row.

a Show that this {p
n
} satis es the recurrence relation 

p
n+1

 = (n + 1)p
n
 with p

1
 = 1. 

{p
n
} is an example of a 

recurrence relation of 

order 1 with variable 

coef cients. 

b Hence show that p
n
 = n!

7 Solve the recurrence relation u
n
 = 2u

n−
 + 3n2,  n ≥ 0 with initial condition u

0
 = 1,

given that a particular solution of  the equation is of  the form p
n
 = An2 + Bn + C.

8 Solve the recurrence relation u
n
 = 5u

n−1
 + 3n,  n ≥ 0 with initial condition u

0
 = −1,

given that a particular solution of  the equation is of  the form p
n
 = A⋅3n

3.3 Modelling with fi rst-degree recurrence relations

Financial problems

Companies advertising loans and investment products try to make their 

products look as attractive as possible. Also, they often have di erent ways 

of  calculating the interest, and the products might involve di erent investment 

periods. It is important that you are informed and use your knowledge 

of  mathematics before making any important decision such as:

● agreeing to the amount of  each regular payment for a given loan 

and the number of  years over which the loan is to be repaid

● deciding how much money to invest right now in return for 

speci c cash amounts to be received in the future
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● calculating the amount of  the pension fund required on the 

date of  retirement to give a  xed income every year for a 

certain number of  years

● determining the fair market value of  a bond. 

A bond is a certi cate 

issued by a government 

or a public company 

promising to repay 

borrowed money at a 

 xed rate of interest at 

a speci ed time.

Loans and amortizations

Arrangements involving savings and loans often involve making a 

regular payment at  xed intervals. For example, a savings 

account might involve saving a certain amount of money every month 

for a number of years. A mortgage might involve borrowing a certain 

amount of money and repaying it in equal instalments over time. 

Calculations involving such regular payment schedules, when they are 

considered in terms of the present values of the payments, as in loans, 

or the future values, as in investments, will involve the summation of  

a geometric series, as shown in the next example. 

Some of these 

problems can be 

solved using your 

previous knowledge of 

core topics. However, 

here we are developing 

systematic and 

ef cient approaches 

that allow you to deal 

with these types of 

problem with less 

guidance.

Example 

Zixian borrows €0 000 at an interest rate of  6% p.a.(per annum). He wants to repay the 

loan in  ve equal instalments over  ve years, with the  rst payment one year after he takes 

out the loan. How much should each payment be?

Let each payment equal A. Note that the present 

value of  each payment A
n
 made after n years is 

given by the recurrence relation A
n

A
n 1

1 06
 with 

A
A

1
1 06



2 51.06 1.06 1.06
10000

A A A
   

1

1 06
1

1

1 06

1
1

1 06

5. .





















= 10 000 4.212363... = 10 000 (A 66 dp)

10 000
= 2373.96

4.212363
2373.96AA    

When regular payments are used to pay 

o  a loan, then we are interested in 

calculating their present values.

6% p.a. means 6% per year which 

results in the factor 1 1.06
6

100
 

The total of  all the payments is equal to 

the loan amount.

This is a geometric series with n = 5,

 rst term a
A


1.06

 and r 
1

1.06
.

If  we switch to months as the unit of  time, then we  rst have to 

determine what monthly interest rate, compounded monthly, 

is equivalent to the interest rate of  6% per annum. This involves 

getting the twelfth root of  .06, which is .00486755. 
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We can treat the present values as a geometric series with  rst term a
A



1 004867551
, 

common ratio r 
1

1 004867551
 and number of  terms n = 60. 

60
1

1
1.004867551 1.004867551

1
1

1.004867551

10000 51.923 10000

A

A

  
  

  
 
 
 

 

You may want to 

calculate the amount 

Zixian can save over 

5 years if he makes 

loan payments 

monthly rather than 

yearly. This gives a monthly repayment of  A = €92.59.

This type of  problem is so common that it is convenient to derive 

a formula to shortcut the calculation for the regular repayment A. 

By considering the general case of  an amortized loan with interest 

rate I, taken out over t years, for a loan amount of P, a geometric 

series can be used to derive the general formula: A P
I I

I

t

t




 

( )

( )

1

1 1
You will derive this formula later as an exercise. 

If  you use this amortization formula with I = 0.00486755, 

P = 0 000, and t = 60 you obtain 

60

60

0.004867551(1.004867551)

(1.004867551) 1
10000 192.5898 192.59A       (2 dp)

Investments and compound interest

When regular payments are being used for investment, we are interested in 

their future values since this tells us how much we can expect to have when 

the investment matures. A scheduled regular payment over time will again 

give rise to a geometric series as shown in the next example.

Example 

A local bank is o ering a regular monthly savings account with a  xed interest rate of  

4.00% p.a. on balances up to €5 000. If  Kristian saves €00 per month, starting today and 

assuming the rate stays the same, how much will he have in his account in  ve years’ time? 

60 59 2 1

12 12 12 12100(1.04) 100(1.04) 100(1.04) 100(1.04)   

 
60

5

1

12

1

12

1
100 1.04 1

1.04

1
1

1.04

6639.57

  
      

 
  
 

 

The amount saved each month has 

a future value given by the 

recurrence relation 
1

12
n nA 1.04 A 1  with 

 
60

12
1A 100 1.04

This is a geometric series with  rst 

term 100 (1.04)5, common ratio 

100(1 04)
1

12.


 and 60 terms. 
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Games and probability problems

First-degree recurrence relations are also a good tool to deal with endless games 

like the next example shows you.

Example 

Ewa and Ericka are playing a game where the  rst player has some advantage over the 

other player:

● The probability that the  rst player wins a round is 
3

5
;

● The probability that the second player wins a round is 
2

5

Today Ewa plays  rst and will continue playing  rst until she loses, at which point she 

needs to pass the  rst turn to Ericka. Let w
n
 denote the probability that Ewa wins the 

n th round. 

a State the value of  w
1
 and  nd the value of  w

2

b Show that {w
n
} satis es the recurrence relation w w

n n
 

1

5

2

5
1

c Solve this recurrence relation to  nd the probability that Ewa wins the third game.

d Hence show that if  Ewa and Ericka play this game for a long time, the probability 

that Ewa wins the n th game is approximately 0.5. Comment on the signi cance of  

this result.

a w1

3

5


w2

3

5

3

5

2

5

2

5

13

25
    

b w w w w
n n n n
      

3

5

2

5

1

5

2

5
1 1 11( )

c w
n

n

n

 




















3

5

1

5

2

5

1

5
1

1

5
1

1

1

    








































  
3

5

1

5

1

2

1

5

1

10

1

5

1

2

1 1 1

1
n n n

d

1
1 1 1 1

10 5 2 2
lim lim

n

n
n n

w
 

  
  

  
  

Therefore Ewa and Ericka have approximately 

the same probability of  winning the n th round if  

they play long enough.

Ewa plays  rst and the probability that the 

 rst player wins a round is 
3

5
; 

w2 
3

5
P  (won 1st round) 

+ 
2

5
P  (lost 1st round) 

When Ewa is the  rst player, the 

probability that she wins a round is 
3

5
; 

when she is the second player (because she 

lost the previous round) the probability is 
2

5

Use u a u b
n

n a

a

n

   1
1

1
1

1
 where 

a 
1

5
 and b 

2

5
; simplify the expression.

Calculate 
n

n

lim w
→∞

 and compare with 

n
n

1 lim w−
→∞

.
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Exercise 3C

1 Dispanshu won a prize and has been given a choice of  two options:

A: Receive a payment of  €500 at the beginning of  each month for 25 years.

 B:  Take a lump sum L instead.

 Dispanshu decides to take option B

 a Find the minimum value of  the lump sum L he should accept assuming an 

interest rate of  4% p.a., given that the interest is paid monthly.

 b  If  Dispanshu invests the lump sum he receives for 20 years in an 

account that pays 4% p.a., determine the  nal value of  Dispanshu’s 

investment after the 20 years.

 Timur opens an account with an interest rate of  3.4% p.a. He deposits €000 

at the beginning of  each year for 0 years. Find the value in ten years of  Timur’s 

annuity. How much will he earn on his investment? 

 Nischay plans to deposit €400 at the beginning of  each month for 

0 years in an account earning 3.25% p.a. Find the lump sum of  money Nischay 

would need to invest now to achieve the same  nal value as Timur from question 

4  The management company of  Zikuan’s apartment block estimates 

that they will need €30 000 in 4.5 years’ time to repaint the outside 

of  the building and common areas. 

If  regular payments are made to a fund earning 2.75% p.a., 

 a  Calculate the interest rate per month, if  paid and 

compounded monthly, that would be equivalent to an 

e ective annual rate of  2.75%.

b  Find the amount that needs to be deposited at the beginning 

of  each month to meet this target.

c Find the total interest that will be earned in the 4.5 years.

 Ewa and Ericka are playing another game where the  rst player also 

has some advantage over the other player:

● The probability that the  rst player wins a round is 
4

7
;

● The probability that the second player wins a round is 
3

7

Today Ericka plays  rst and will continue playing  rst until she 

loses, at which point she needs to pass the  rst turn to Ewa. 

Let {w
n
} denote the probability that Ericka wins the n th round.

 a State the value of  w
1
 and  nd the value of  w

2

 b Show that {w
n
} satis es the recurrence relation 


 

1

1 3

7 7
nn

w w .

 c  Solve this recurrence relation to  nd the probability that Ericka 

wins the  fth round.

 d  Find the probability that Ericka wins the n th round as n gets 

very large. 
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3.4  Second-degree linear homogeneous recurrence 
relations with constant coe  cients

In this section you are going to learn a method to  nd the general 

term of  a sequence that satis es a recurrence relation of  the form 

a ⋅ u
n+2

 + b ⋅ u
n+

 + c ⋅ u
n
 = 0 where a, b, c ∈, a ≠ 0 and n ∈

(or sometimes n ∈+). These recurrence relations are called 

second-degree linear homogeneous recurrence relations and to 

determine a solution we need two initial conditions. 

These types of  recurrence relations are very useful to model a large 

class of  counting problems, including some famous ones like the 

Fibonacci problem, described by the recurrence relation F
n
 = F

n−
 + F

n−2
, 

with initial conditions F

 = 1,  F

2
 = 1

The original problem that Fibonacci investigated in the 

year 1202 was about how fast rabbits could breed in 

ideal circumstances. This was the ideal scenario: suppose a

newly-born pair of rabbits, one male, one female, are put in a 

 eld. Rabbits are able to mate at the age of one month so 

that at the end of its second month a female can produce 

another pair of rabbits. We also suppose that our rabbits 

never die and that the female always produces one new pair 

(one male, one female) every month from the second month 

on. The puzzle that Fibonacci posed was to determine the 

number of rabbit pairs will there be after one year.

month 1

month 2

month 3

month 4

Although these recurrence relations seem more complicated, they 

are in fact easy to solve using a systematic method:

Step 1: Express the second-degree linear homogeneous recurrence 

relation given in the form a ⋅ u
n+2

 + b ⋅ u
n+

 + c ⋅ u
n
 = 0 and 

write down its auxiliary equation ax2 + bx + c = 0.

Step 2:  Solve the quadratic equation obtained using an appropriate method.

The auxiliary or 

characteristic 

equation of a 

second-degree  

recurrence 

relation is a 

quadratic equation 

associated to the 

recurrence relation 

by the coef cients 

a, b and c of its 

terms.

Step 3: The general term of  your solution depends on the number 

and type of  solutions of  the auxiliary equation. In each 

case, A and B are constants to be determined using the initial 

conditions provided.

Case 1: Two distinct real roots α

 and α

2
. The general solution is 

  
1 2

n n

n
u A B .

Case 2: A double real root α

. The general solution is  

1 1

n n

n
u A Bn  .

Case 3: Two conjugate complex roots r cis(±θ). The general solution 

is u
n
 = r n(A cos nθ + B sin nθ).
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Examples 0 to 2 show you how to apply the formula in each of  the cases.

Example 

Solve the recurrence relation u
n
 = u

n−
 + u

n−2
 with initial conditions u

0
 = 0 and u


 = 1

u
n+2

 = u
n+

 + u
n

⇒ u
n+2

 − u
n+

 − u
n
 = 0

The auxiliary equation is 

x2 − x − 1 = 0

and its solutions are x 
1 5

2

The general term is of  the form

u A B
n

n n

 




















1 5

2

1 5

2

u

u

A B

A B

0

1

0

1

0

1 5 1 5 2










 

   





 ( ) ( )


 

   







A B

A B A B

0

5 2( ) ( )

 A
1

5
 and B  

1

5

 


















u

n

n n

1

5

1 5

2

1

5

1 5

2

Re-arrange the equation to the form 

a ⋅ u
n+2

 + b ⋅ u
n+1

 + c ⋅ u
n
 = 0

and write down the equation ax2 + bx + c = 0.

Solve the quadratic equation:
  



2
b b 4ac

2a
x

The general solution is  
n n

n 1 1
u A B 

Substitute n = 0 and n = 1.

Solve simultaneously for A and B.

The solution is the famous Binet’s general formula 

for Fibonacci numbers F
n
 that you had already 

deduced in the investigation on pages 79–80.

Example 

Solve the recurrence relation u
n+2

 = 2u
n+

− u
n
 with initial conditions u

0
 = 1 and u


 = 2.

u
n+2

 = 2u
n+

− u
n 
⇒ u

n+2
− 2u

n+
 + u

n
 = 0

The auxiliary equation is 

x2 − 2x + 1 = 0 and its solution is x = .

The general term is of  the form u
n
 = A + Bn

u

u

A

A B

0

1

1

2

1

2











 







∴ A = B = 1

∴ u
n
 = n + 1

Re-arrange the equation to the form 

a ⋅ u
n+2

 + b ⋅ u
n+1

 + c ⋅ u
n
 = 0

and write down the equation ax2 + bx + c = 0.

Solve the quadratic equation by inspection.

The general solution is  
n n

n
u A Bn  .

Substitute n = 0 and n = 1.

Solve simultaneously for A and B.
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Example 

Solve the recurrence relation u
n+2

 + u
n+

 + u
n
 = 0 with initial conditions u

0
 = u


 = 1

The auxiliary equation is 

x2 + x + 1 = 0

and its solutions are x 
 1 3

2

i

i.e. 
 
 
 

 
2

3
cisx



The general term is of  the form

u A Bn

n n
 cos sin

2

3

2

3

 

u

u

A

B

0

1

1

1

1

1
2

3

2

3







 













cos sin
 

  A B1 3,

  un

n n
cos sin

2

3

2

3
3

 

Write down the equation ax2 + bx + c = 0.

Solve the quadratic to obtain two conjugate 

complex roots.

Write them in the form rcis(±θ).

The general solution is 

u
n
 = r n (A cos nθ + B sin nθ).

Substitute u
1
 = u

0
 = 1.

Solve simultaneously for A and B.

Examples 3 and 4 show you real life applications of  

second-degree homogeneous recurrence relations.

Example 

The number of  cases of  student sickness due to a very contagious virus at Gauss 

International School is growing in such a way that the growth rate in any week is twice 

the growth rate during the previous week. Suppose that during the  rst week when 

students started getting sick the number of  cases of  infection was 20, and in the second 

week 25 cases were identi ed. Let {S
n
} denote the number of  students sick due to this 

virus during week n.

a Show that {S
n
} is de ned by the recurrence relation S

n+2
 − S

n+1
 = 2(S

n+1
 − S

n
)

and state appropriate initial conditions.

b Solve the recurrence relation to obtain an expression for S
n
 in terms of  n.

c Find S
7
.

d State a limitation of  this model in the real life context provided.

a
  



  
 

2 1 1

1

2( )n n n n

increase during increase during
week n week n

S S S S

Initial conditions: S

 = 20 and S

2
 = 25

The di erence between consecutive terms of  {S
n
} 

represents the number of  new cases of  this virus.

In the  rst two weeks there were 20 and 25 cases 

registered, respectively. 
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b S
n+2

 − 3S
n+

 + 2S
n
 = 0

 x 2 − 3x + 2 = 0 ⇒ (x − )(x − 2) = 0

∴ x =  or x = 2

The general solution is

∴ S
n
 = A + B ⋅ 2n

 S
 
= 20 ⇒ A + 2B = 20

 S
2 
= 25 ⇒ A + 4B = 25

∴ A = 5 and B = 2.5

∴ S
n
= 5 + 2.5 × 2n

c S
7
 = 5 + 2.5 × 27 = 335

d The model is valid for just a few 

values of n as S
n
 cannot exceed the 

total number of students in the school.

Re-arrange the equation into the form 

a ⋅ u
n+2

 + b ⋅ u
n+1

 + c ⋅ u
n
 = 0

and write down its auxiliary equation

ax 2 + bx + c = 0 and solve it.

As there are two distinct real roots, α
1
 and α

2 
, the 

general solution is α α= +
n n

n 1 1
u A B

Use initial conditions to determine the values of  A and B.

Substitute the values into the expression to obtain the 

solution to the problem.

Substitute n by 7.

For example, consider limitations related to 

restrictions of  values of  n in relation to size of  the 

school.

Example 

In a colony of  birds there were initially 2 pairs (2 male and 2 female). Assume that 

none of  the birds produced eggs in their  rst year but in subsequent years each pair 

produced 4 eggs (2 male, 2 female) and no birds died. Show that the colony’s population 

can be described by the recurrence relation u
n
 = u

n−
 + 2u

n−2
 for n ≥ 2 with u

0
 = u


 = 12, 

where u
n
 is the number of  pairs of  birds at the beginning of  the n th year. Hence  nd the 

minimum number of  years until the population exceeds 200 pairs of  birds.

From the second year on, the number of  

pairs is given by the sum of the number of  

pairs in the previous year plus the newborn 

birds which are exactly twice as many as 

the number of pairs two years before. 

u
n
 = u

n−
 + 2u

n−2
⇒ u

n
− u

n−
− 2u

n−2
 = 0

x 2 − x − 2 = 0 ⇒ (x + 1)(x − 2) = 0

∴x = −1 or x = 2 

The general solution is

∴u
n
 = A(−1)n + B ⋅ 2n

u

 = 12 ⇒ −A + 2B = 12

u
2
 = 12 ⇒ A + 4B = 12

∴A = −4 and B = 4

∴u
n
 = −4 ⇒ (−1)n + 2n+2

u
n

> 200 ⇒ −4(−1)n + 2n+2 > 200

∴n ≥ 5 

The population will exceed 200 pairs in 

5 years.

u
n
 is the number of  pairs of  birds at the beginning of  

the n th year. 

None of  the birds produced eggs in their  rst year.

Re-arrange the equation into the form 

a ⋅ u
n+2

 + b ⋅ u
n+1

 + c ⋅ u
n
 = 0

and write down its auxiliary equation 

ax2 + bx + c = 0 and solve it.

As there are two distinct real roots, α
1
 and α

2 
, 

the general solution is  
1

n n

n 1
u A B 

Use initial conditions to determine the values of  

A and B.

Use a GDC to solve the inequality and  nd the 

minimum value of  n that satis es the condition.
Example 14

BA C D

1

2

3

4

5

12

12

36

84

204

1

2

3

4

5

B5 =b3+2•b4

1.1

n un
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Exercise 3D

EXAM-STYLE QUESTIONS

1 Solve the second-degree recurrence relations.

 a u
n
 = 3u

n−1
 + 4u

n−2
 with u

0
 = u

1
 = 1

 b u
n
 = u

n−2
 with u

0
 = 3 and u

1
 = 2 

 c u
n
 = 4u

n−1
− 4u

n−2
 with u

0
 = 1 and u

1
 = 3 

 d u
n
− 2u

n−1
 + 5u

n−2
 = 0 with u

0
 = u

1
 = 1

2 For each of  the sequences {u
n
}, 

i write down a recurrence relation of  the form 

u
n+2

− u
n+

 = k (u
n+

− u
n
) where k ∈, k ≠ 0.

ii re-arrange the equation into the form a ⋅ u
n+2

 + b ⋅ u
n+

 + c ⋅ u
n
 = 0

and solve it to obtain a general term for {u
n
}

a u
n
: 3, 6, 12, 24, 48, ...

b u
n
: 1, 2, 6, 22, 44, 88, ...

3 In an experiment, the pressure of  gas in a closed container is 

measured in regular intervals. Let P
n
 represent the pressure 

(in standard units) at the n th time it is measured. Given that P
1
 = 8, 

P
2
 = 6, and for n > 2, P

n

P P
n n  


1 2

2
,  nd a formula for P

n

in terms of  n. Hence, state the value of  the pressure of  the gas 

after a long period of  time in the container.

4 Consider the following counting problem:

Viktoria can climb one or two steps at a time when going up the school 

stairs. Let V
n
 denote the number of  distinct ways to get to the n th step. 

 a Explain why V
1
 = 1, V

2
 = 2 and V

n
 = V

n−1
 + V

n−2
, for n ≥ 3.

 b State the relation between the sequence {V
n
} and the 

Fibonacci numbers.

 c Hence state an expression for the general term of  {V
n
}

5 Show the following property of  Fibonacci numbers:

F F
i

i

n

n2

0

2 1
1



  

 a using strong mathematical induction

 b using Binet’s formula.

6 State clearly the recurrence relation and the initial conditions that 

de ne the Lucas numbers (see box at the right). Hence  nd a 

generating expression of  this sequence {L
n
}.

7 Use the general expressions from the sequences {F
n
} and {L

n
} to 

show the following properties of  the Lucas and Fibonacci numbers. 

a L
n
 = F

n−
 + F

n+

b 5⋅F
n
 = L

n−
 + L

n+

 c F
2n

 = F
n

L
n

The Lucas 

numbers are the 

integer sequence 2, 1, 

3, 4, 7, 11, 18, … 

named after the 

mathematician 

François Édouard 

Anatole Lucas 

(1842–1891).
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Review exercise 

EXAM-STYLE QUESTIONS

1 Solve the following recurrence relations.

a u
n

= −3u
n−1

 + 1 with u
0
 = 1 b u

n
 = 5u

n−1 
− 2 with u

0
 = 6

c u
n

= 6u
n−1 

− 5n + 1 with u
0
 = 10 d u

n
 = 7u

n−1 
− 8n with u

0
 = −3

2 The sequence {u
n
}, n ∈+, n ≥ 2, satis es the second-degree 

recurrence relation u
n+1

 = 7u
n 
− 12u

n−1

Given that u
0
 = −2 and u


 = 12, use the principle of  strong 

mathematical induction to show that u
n
 = −20⋅3n + 18⋅4n

3 The sequence {u
n
}, n ∈+, n ≥ 2, satis es the second-degree 

recurrence relation u
n
 = −4(u

n−1
 + u

n−2
)

Given that u

 = 1 and u

2
 = 8, use the principle of  strong 

mathematical induction to show that u
n
 = (−2)n−(5n − 6).

4 The recurrence relation u
n
 + A u

n−1
 + B u

n−2
 = C, n ≥ 2, de nes 

the sequence whose  rst  ve terms are 0, 2, 5, 9 and 12.

a Determine the values of  A, B and C

b Hence  nd the next 3 terms of  the sequence {u
n
}.

5 Find an expression for the general solution of  the recurrence relation 

u
n+2 

+ 9u
n  

= 0. Hence  nd the solution that veri es the initial conditions 

u
0
 = −4 and u

1
 = 2.

6 A bank pays 8% interest p.a. for a long-term investment. 

Elias decides to invest €1000 right away; Nischay decides 

that instead he will open an account with just €100, and then 

deposit €100 at the beginning of  each year.

 a  Write down a homogeneous recurrence relation whose general 

solution a
n
 represents the total amount Elias has in his bank 

account at the end of  the n th year.

 b  Write down a recurrence relation whose general solution b
n

represents the total amount Nischay has in his bank account 

at the end of  the n th year, should he follow his savings plan.

c Solve both recurrence relations (note that a
0
 = 1000 and b

0
 = 100).

 d  Hence  nd the minimum number of  years Nischay needs to save 

until his savings exceed the amount Elias has as a result of  his 

initial investment of  €1000.

7 Solve the recurrence relation u
n+2

− 3u
n
 = 0, with u

0
 = 2 and u

1
 = 6.
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8 Find the general solution of  the recurrence relation v
n+2

 = v
n−1

 + 2v
n
, 

n ∈, given that v
0
 = 1 and v

1
 = 3

9 Find the general solution of  the recurrence relation 

u
n+2

 = 5u
n−1

 − 6u
n
, n ∈+. State the initial conditions that 

result in a general solution u
n
 = 3n, n ∈+

10 Consider the two recurrence relations u
n
 = 5u

n−1
 + 2v

n−1

and v
n
 = u

n−1
 + 2v

n−1
, with u

0
 = 2 and v

0
 = 1

 a By eliminating v
n
 and v

n−1
, show that u

n
 = 7u

n−1
− 8u

n−2

 b  Hence solve the recurrence relations and  nd expressions 

for u
n
 and v

n

Chapter  summary
De nition: A recurrence relation of  degree k is an equation that de nes 

each further term of  a sequence as a function of  k preceding terms, 

i.e. u
n
 = f  (u

n−
, …, u

n k
)

A  rst-degree recurrence relation is of  the form u
n
 = a ⋅ u

n−
 + f  (n)

where a ∈\{0},  n ∈+ and f  is a function of  n of  the form f  (n) = b + cn,  for b, c ∈{}. 

These recurrence relations can be classi ed into:

i homogeneous  rst-degree recurrence relations if  b = c = 0;

ii inhomogeneous (or non-homogeneous)  rst-degree recurrence 

relations otherwise.

General solutions of  rst-degree recurrence relations:

If  u
n
 = a  u

n−
 + b, the general solution is = ⋅ + ⋅

1

1

1 1

1

n

n

n

a

a
u a u b

or    0

1

1

n

n

n

a

a
u a u b

If  u
n
 = u

n−
 + b + c ⋅ n, the general solution is u u c n k b

n

k

n

    


0

0

1

( ( ) )

If  u
n
 = a ⋅ u

n−
 + b + c n, the general solution is of  the form u

n
 = an ⋅ u

0
 + An + B

where A and B are constants to be determined by substituting 

p
n
 = An + B into u

n
 = a ⋅ u

n−
 + b + c ⋅ n

A second-degree recurrence relation is of  the form 

a ⋅ u
n+2

 + b ⋅ u
n+

 + c ⋅ u
n
 = 0 where a, b, c ∈, a ≠ 0 and n ∈

(or sometimes n ∈+). 
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General solutions of second-degree homogeneous 
recurrence relations 

Step 1: Express the second-degree linear homogeneous recurrence 

relation given in the form a ⋅ u
n+2

 + b ⋅ u
n+

 + c ⋅ u
n
 = 0 and write 

down its auxiliary equation ax2 + bx + c = 0.

Step 2: Solve the quadratic equation obtained using an appropriate 

method.

Step 3: The general term of  your solution depends on the number 

and type of  solutions of  the auxiliary equation. 

In each case, A and B are constants to be determined 

using the initial conditions provided.

Case 1: Two distinct real roots α

 and α

2
:

The general solution is  
1 2

n n

n
u A B 

Case 2: A double real root α
 
:

The general solution is  
1 1

n n

n
u A Bn 

   Case 3: Two conjugate complex roots r cis(±θ):

The general solution is u
n
 = r n (A cos nθ + B sin nθ).

The Fibonacci sequence is de ned by F
0
 = 0, F


 = 1 and F

n
 = F

n−
 + F

n−2
, for n ∈+, n ≥ 2.

Binet’s formula for Fibonacci numbers: F
n

n

 




















1

5

1 5

2

1

5

1 5

2

Converting miles into kilometres

As +1

+
lim =n

n
n

F

F

F
 

, the ratio of two consecutive numbers tends to the Golden Ratio as numbers get bigger 

and bigger. The Golden Ratio is a number and it happens to be approximately 1.618. Coincidentally, there 

are 1.609 kilometers in a mile, which is very close to the value of the Golden Ratio. This means that if 

you take two consecutive terms F
n
 and F

n+1
 in the Fibonacci sequence, for each F

n
 number of miles the 

conversion to kilometres is approximately equal to F
n+1

. The accuracy of this conversion depends on the 

order of the terms used as for small values of n the values of the ratio 
+1n

n

F

F
 vary; however as n gets larger 

the ratio quickly tends to the Golden Ratio as you can verify with your graphical calculator:

 Golden ratio I

BA C

4

5

6

7

8

1.5

1.6666667

1.6

1.625

1.6153846

3.

5.

8.

13.

21.

fn ratio

B ratio

1.1  Golden ratio II

BA C

9

10

11

12

13

1.6190476

1.6176471

1.6181818

1.6179775

1.6180556

34.

55.

89.

144.

233.

fn ratio

B ratio

1.1
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From folk puzzles 
to a new branch 
of mathematics

4

CHAPTER OBJECTIVES:

10.7 Graphs, vertices, edges, faces. Adjacent vertices, adjacent edges.

Degree of a vertex, degree sequence. Handshaking lemma. Simple graphs; 

connected graphs; complete graphs; bipartite graphs; planar graphs; trees; 

weighted graphs, including tabular information. Subgraphs; complements of 

graphs. Euler’s relation: v − e + f = 2 (including proof); theorems for planar 

graphs including e ≤ 3v − 6, e ≤ 2v − 4, leading to the results that κ
5
 and κ

3,3

are not planar.

10.8 Walks, trails, paths, circuits, cycles. Eulerian trails and circuits. Hamiltonian 

paths and cycles

Before you start

 Know and use set notation and 

terminology, e.g. given the universal set 

U = {, 2, 3, 4, 5, 6} and its subsets 

A = {, 2, 3} and B = {, 3, 5}, the 

complement of  A is A′ = {4, 5, 6}, the 

intersection of  A and B is A ∩ B = {3} 

and their union is A ∪ B = {, 2, 3, 5}.

 Recognize regular solids and their 

elements, e.g. a cube is a regular solid 

with 6 faces, 8 vertices and 2 edges.

 Know how to apply the Pigeonhole 

Principle to solve counting problems, 

e.g. If  you pick  ve cards from a standard 

deck of  52 playing cards, then at least two 

cards will be of  the same suit because

each of  the  ve cards can belong to one 

of  four suits. By the Pigeonhole 

Principle, two or more must belong to 

the same suit.

 Given the universal set

U = {, 2, 3, 4, 5, 6, 7, 8}, and its subsets 

A = {2, 4, 6} and B = {5, 6, 7},  nd:

 a A ∩ B b A ∪ B

c A′ d (A ∩ B)′

 Sketch a quadrangular pyramid and state 

its number of  vertices, edges and faces.

 In an experiment, scientists want to nd 

two people with the same blood group 

(A, B, O or AB). In order to save time, 

the blood samples will be collected and 

processed simultaneously. Find the 

smallest number of  samples that should 

be collected.
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Introduction to Graph Theory

In the history of  mathematics the  rst reference to Graph Theory is 

associated with a popular problem – the bridges of  

Königsberg – solved by Leonhard Euler almost 300 years ago.

This branch of  mathematics then grew in sometimes rather 

informal and disorganized ways, as many times the methods were 

devised by curious mathematicians who were challenged by rather 

recreational problems. In fact, many of  these problems and puzzles 

intrigued mathematicians exactly because their statements were so 

simple but required rather clever methods to tackle them. With the 

advent of  computers, and as the importance of  systematic and clear 

approaches to problem solving became crucial, Graph Theory 

evolved to a recognized branch of  mathematics, characterized 

by its speci c terminology and methods, and valued for its wide 

range of  applications to contemporary problems.

The Königsberg bridge 

problem asks if the 

seven bridges of the 

city of Königsberg (now 

Kaliningrad, in Russia), 

over the river Preger 

can all be traversed in a 

single trip without going 

back over any of the 

bridges already crossed, 

with the additional 

requirement that the trip 

ends in the same place 

it began. In 1736 Euler 

proved that this cannot 

be done, and his proof is 

considered the beginning 

of Graph Theory.
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4.1 Terminology and classifi cation of graphs
In this section we are going to de ne the most common terms used 

in Graph Theory and look at key examples to give you a clear idea 

about the concepts involved. This branch of  mathematics is laden 

with speci c terminology and you must learn the exact meaning 

of  each term if  you are to follow the results of  the course. 

Precision and rigour are paramount when it comes to Graph Theory. 

On the other hand, most terms and concepts can be described by 

diagrams – Graph Theory is all about diagrams! – and this makes 

some concepts evident and easy to learn. So, look carefully at 

all diagrams provided in this chapter and do draw your own 

whenever you attempt to understand and solve a problem.

What is a graph and what are its elements?

A graph can be de ned in terms of  a very simple concept in 

mathematics: the concept of  set. 

De nition

A graph G = (V, E ) consists of  two sets:

1 A set V of  vertices (also called points or nodes)

2 A set E of  unordered pairs of  vertices called edges 

(also called arcs) 

In a graph, two vertices A and B are said to be adjacent if  they are 

joined by an edge, i.e. if  there is an edge a = AB. 

a

b

c

f

d

e

A

B

C

D

E

In this case, vertices A and B are said to be incident on edge a. 

Two edges are adjacent if  they have a common vertex, i.e. there 

is a vertex incident with both edges. For example, the edges 

a and b are adjacent because the vertex B is incident with 

both of  them. 

The edges of the 

graph can also be 

labeled a, b, c, d, e 

and f as shown in the 

diagram. 

De nition

The order and size of  a graph G are de ned in terms of  the 

number of  elements of  the sets V and E : v = |V| = order of  G,

and e = |E| = size of  G.

For example, the graph above has order 5 because it consists of  

 ve vertices, and has size 6 because it has a total of  six edges: 

AB, AC, AD, BC, CD and CE.
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De nition

The number of  edges incident to a vertex is called the degree of 

the vertex. The degree of  a vertex A is denoted by deg (A).

When you want to  nd the degree of  a vertex, you just need to 

count the number of  edges incident with this vertex. A vertex with 

degree zero is an isolated vertex, i.e. a vertex that is not the endpoint 

of  any edge and therefore not adjacent to any other vertex in 

the graph. 

For the graph here, deg (A) = 3, deg (B) = 2, deg (C) = 4, deg (D) = 2 

and deg (E) = .

Some graphs – called multigraphs - may include multiedges and 

loops, as illustrated in the diagram below. Multiedges are two or 

more edges connecting the same pair of  distinct vertices; a loop is 

an edge joining a vertex to itself. Loops are counted twice towards the 

degree of  their endpoints. In this diagram, the vertex C has degree 6.

E

A

D

B

C

An adjacency table {a
ij
} shows whether or not two given 

vertices V
i
 and V

j
 in a graph are connected:

● if  they are connected, the value of  the entry a
ij
 is the number of  

edges connecting them; 

● otherwise a
ij
 = 0. 

For the multigraph above, an adjacency table (taking the vertices in 

order A, B, C, D and E) is shown, below right.

We can read the degree of  each vertex by simply adding the entries 

of  the corresponding row or column. For example, 

A has degree 0 +  + 0 +  + 2 = 4, and C has degree 

0 + 2 + 2 +  +  = 6. 

We can also  nd the order of  the graph by counting the 

number of  columns or rows of  the table (5 in this case), and 

 nd the size of  the graph by adding all the entries in the table 

and then dividing it by 2 since each edge is incident with two 

vertices (and a loop is counted twice). In this case the size is 2. 

A B C D E

A 0  0  2

B  0 2 0 

C 0 2 2  

D  0  0 2

E 2   2 0

a

b

c

f

d

e

A

B

C

D

E
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Example 

For the graph here, write down:

a the number of  vertices  b the number of  edges

c the degree of  each vertex d the adjacency table.

C

E

A

D

B

a 5 vertices

b 9 edges

c deg (A) = 4, deg (B) = 3,

deg (C) = 5, deg (D) = 2

 and deg (E) = 4

d A B C D E
A 0   0 2
B  0 2 0 0
C  2 0  
D 0 0  0 
E 2 0   0

Count the points labelled A, B, C, D and E.

Count the arcs connecting the vertices.

Count the number of  edges incident with 

each vertex.

If  two vertices in a graph are connected, the 

value of  the entry a
ij
 is the number of  edges 

connecting them; otherwise a
ij

= 0.

Short Investigation 

1 Draw several graphs and multigraphs with order 4, 5 and 6. For each of  them  nd its 

size, its order and the degree of  each of  its vertices. 

2 Investigatepossible relationships between the size of  the graph and the degrees of  the 

vertices. If  necessary, draw a few more graphs of  di erent orders.

3 Investigate graphs with vertices of  odd degree. 

4 How many vertices of  odd degree do they have? Can you draw a graph with exactly 3 

vertices of  odd degree? Why or why not?

This short investigation reveals a very useful theorem known 

as the Handshaking lemma that we will now prove: 

Theorem 1

The sum of  the degrees of  the vertices of  

a graph G is twice the size of  G, i.e. if  G = (V, E ) and 

|E| = e then 
∈

=
A

(A) 2
V

deg e

Proof:

Every edge in a graph G connects two vertices. Therefore if  we 

add all the vertices’ degrees we count each edge twice, i.e. the sum 

of  the degrees of  all the vertices of  G equals twice the size of G 

(total number of  edges). Q.E.D.

The name Handshaking 

lemma comes from the 

fact that we can think of 

the vertices as people 

and the handshakes as 

edges. Informally, we can 

state the Handshaking 

lemma as ‘if n people 

meet and shake hands, 

the sum of individual 

handshakes is twice the 

number of the total 

handshakes that occurred’.
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The Handshaking lemma has a very useful corollary:

Corollary

The number of  vertices of  odd degree in a graph G = (V, E ) is 

always even.

Proof:

The degree of  a vertex is either odd or even. Let V
O
 be the set 

of  all vertices of  an odd degree and V
E
 be the set of  all vertices of  an 

even degree. Since V
O

∩ V
E
 = ∅ and V

O
∪ V

E
 = V, we can write

  

    
A A A

2 (A) (A) (A)
O EV V V

nm

e deg deg deg



As n must be even, as it is the sum of  even numbers (the degrees of  the 

vertices of  even degree), m must also be even, as m + n = 2e. Therefore, 

the number of  odd degrees added to obtain m must be even. Q.E.D.

De nition

H = (V ′, E ′ ) is called a subgraph of  a graph G = (V, E ) if  and 

only if  V ′ ⊆ V and E ′ ⊆ E where V ′ ≠ ∅, and the edges in E ′ are 

adjacent to the vertices in V ′

For example, the diagram to the right shows with dashed lines 

the graph H = (V ′, E′ ) as a subgraph of  G = (V, E )  because 

V ′ = {A,  B,  C,  D} ⊆ V = {A,  B,  C,  D,  E} and 

E ′ = {AB,  BC,  AD} ⊆ E = {AB,  AC, AD, BC, CD, CE}. 

A

B

C

D

E

Exercise 4A

1 For the graph in the diagram, write down:

 a the number of  vertices 

 b the number of  edges

 c the degree of  each vertex

 d the adjacency table. 

A B

C
D

E

F

G

H

2 Draw the graphs described by the following 

adjacency tables. State the degree of  each 

vertex, the size of  the graph and its order.

 a A B C D
A 0   0
B  0  0
C   0 
D 0 0  0

 b A B C D E F
A 2   0  
B  0  0 0 
C   0   
D 0 0  2  
E  0   0 0
F     0 2



From folk puzzles to a new branch of mathematics108

3 The graphs G
1
 = (V

1
, E

1
) and G

2
 = (V

2
, E

2
) have the following properties:

 |V

| = |V

2
| = 6, |E


| = 0 and |E

2
| = 2.

 a Draw a pair of  possible graphs G
1
 and G

2

 b Write down the adjacency tables for G
1
 and G

2

4 A graph contains 22 vertices and 43 edges. Every vertex has a 

degree of  3 or 5. Find the number of  vertices with degree 3 and 

the number of  vertices with degree 5.

Graphs are used in the  eld of chemistry to model chemical 

compounds. In computational biochemistry some sequences of cell 

samples must be excluded to resolve the con icts between two sequences. 

This is modelled in the form of a graph where the vertices represent the 

sequences in the sample. An edge will be drawn between two vertices if and 

only if there is a con ict between the corresponding sequences. The aim is 

to obtain subgraphs by removing vertices to eliminate all con icts in the 

sequences.

4.2 Classifi cation of graphs

In this section we are going to study the most usual and useful 

classi cations of  graphs. Be aware that the same graph can be 

classi ed according to di erent properties. 

Weighted graphs

If  the edges of  a graph are assigned a number (the weight) we say 

that the graph is a weighted graph like the ones shown here. 

E

6

1 2

5

37

8
A

D

B

C

E

6

1

3

2

5

7

A

D

B

C

We will explore 

weighted graphs in 

detail in chapter 5. In 

general, the weight of a 

graph represents a 

quantity that people want 

to minimize, for example: 

the cost of a  ight, length 

of a road or time 

necessary to complete a 

task. In chapter 5 we will 

look at strategies to 

obtain optimal solutions to 

such practical problems.
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Directed graphs

A directed graph or digraph is a set of  vertices connected by edges, 

where each edge has a direction associated with it. Digraphs can 

also be weighted graphs.

A
B

C

D

E

F
A

B

10

7

5
4

5

3

C

D

E

F

Unweighted digraph Weighted digraph

Simple graphs

De nition

A simple graph is an unweighted, undirected graph containing no 

loops nor multiple edges.

simple graph

A

B

C

D

nonsimple graph

with multiple edges

A
B

C

D

nonsimple graph

with loops

A

B

C

D

In order to classify simple graphs further you need to learn a few 

more de nitions:

De nitions

A walk is a sequence of  linked edges. Usually we describe a walk 

by listing the vertices in order as we walk it. 

The length of a walk is its total number of  edges listed.

A path is a walk with no repeated vertices. 

The degree sequence of  a path lists the degrees of  the vertices in 

the order we pass through them as we walk along the path. 

A cycle is walk that begins and ends at the same vertex, and has 

no repeated vertices. The length of a cycle is its total number of  

distinct vertices listed. 

A trail is a walk with no repeated edges.

A circuit is a walk that begins and ends at the same vertex, and 

has no repeated edges.

The number of 

vertices listed to 

describe a walk is one 

more than its length.
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Example 

The graph G is shown here.

a Explain why it is a simple graph.

b Find two distinct paths connecting A and D and their 

corresponding degree sequence.

c State two cycles of  G and their length.

d State a walk that is a circuit. 

A

D

B C

E

a G is an unweighted, undirected graph 

containing no loops nor multiple edges. 

b AED with degree sequence 2, 4, 2; 

ABED with degree sequence 2, 3, 4, 2.

c ABEA is a cycle of  length 3; 

BCDEB is a cycle of  length 4.

d ABECDEA is circuit.

Use the de nition of  a simple graph.

The path AED has edges AE and ED. The 

path ABED has edges AB, BE and ED.

List in order the degrees of  the vertices that 

describe the path.

Select a path such that the  rst vertex of  the 

path corresponds to the last, and count the 

number of  distinct vertices.

Select a walk without repeated edges such that 

the  rst vertex corresponds to the last. Note 

that you may walk through the same vertex 

more than once.

Connected graphs

A graph is connected when there is a path from any vertex to any 

other vertex in the graph. A graph that is not connected is said to 

be disconnected. The following diagram shows all possible connected 

simple graphs with 2, 3 and 4 vertices respectively. The empty graph 

and the graph with a single vertex are considered trivial cases of  

connected graphs.

The Pigeonhole Principle, studied in chapter 2, allows us to 

prove the following result about simply connected graphs:

Theorem 2

Let G be a simply connected graph of  order n, for n ≥ 2. Then G

has at least two vertices with the same degree.

Simply connected 

means that the graph 

is both simple and 

connected.
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Proof:

As G is a connected graph with more than one vertex, the degree 

of  each vertex is at least one, i.e. deg (V
i 
) ≥ . As the graph G is simple, 

there are no multiple edges; therefore each vertex can be connected 

with at most n −  vertices, i.e. deg (V
i 
) ≤ n − . This means that the 

list of  possible degrees for each vertex of  G is , 2, ...., n − . As 

there are n vertices, by the Pigeonhole Principle, at least two 

vertices must have the same degree. Q.E.D.

Trees

A tree is a connected graph with no cycles.

The diagram above shows a forest that consists of  three rooted trees.

Short Investigation

Draw a tree with 5 vertices. 

For any two vertices in the tree, how many paths can you  nd that have them as 

endpoints?

How many edges does the tree have?

Can you remove a vertex without disconnecting the graph?

Draw more trees with 6, 7 and 8 vertices respectively and answer the same questions. 

State your conclusions.

This investigation reveals important properties of  trees. In fact these 

properties can be used as alternative de nitions of  a tree as established 

in the following theorem:

Theorem 3

Let G = (V, E ) be a  nite graph with more than one vertex.  

The following statements are equivalent:

 G is a tree.

 Each pair of  vertices of G is connected by exactly one path.

 If  a is an edge of  G then G − {a} is disconnected.

 G is cycle-free and has n −  edges.

 G is connected and has n −  edges.

In Computer Science, 

trees are very useful 

tools, particularly rooted 

trees that have one vertex 

– the root singled-out as the 

starting point for all branches 

of the tree. Rooted trees can 

be used to store data in 

computers in different ways 

that require more or less 

memory to encode this data.

Root

In Graph Theory 

a collection of 

disjoint trees is called 

a forest
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Proof:

We start with the de nition of  tree (a connected graph with no cycles) 

and need to show that . ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 5. ⇒ .

Consider G = (V, E ) with V = {V

, ..., V

i
 ,  V

j
 , ..., V

n
}, n ≥ 2. 

. ⇒ 2.

G is a tree. Therefore any two vertices V
i
 and V

j
 are connected by at 

least one path. Suppose that two distinct paths P and Q connecting 

V
i
 and V

j
 exist. Then G would contain a cycle P ∪ Q which contradicts 

the assumption that G is a tree. Therefore each pair of  vertices of G is 

connected by exactly one path. Q.E.D.

2. ⇒ 3.

Suppose now that each pair of  vertices of G is connected by 

exactly one path. Consider the vertices V
i
 and V

j
 connected by the 

edge a. {a} is a path and is the only one connecting V
i
 and V

j 
. 

Therefore G − {a} is disconnected as it contains no path connecting 

V
i
 and V

j
. Q.E.D.

The remaining proofs are left to you as an exercise. 

Complete graphs

Complete graphs are a very important family of  graphs and we have 

special notation to represent each family member:

K1 K2 K3 K4 K5

As illustrated above, the index of  the letter K gives the number of  

vertices or order of  the graph K
n
. Complete graphs are characterized 

by the property: ‘each vertex is adjacent to every other vertex in 

the graph’. This means that it is not possible to add edges to these 

graphs without obtaining a multigraph!

Theorem 4

Let K
n
 be the complete graph of  order n, n ∈ +. The number of  

edges (the size) of  K
n
 is 

n n( )1

2

Proof:

The number of  vertices is n. As each edge connects two vertices, 

there are exactly 
( 1)

22

n nn  
 
 

  edges. Q.E.D.

An alternative way of  obtaining the size of  K
n
 is by looking at its 

adjacency table.
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The adjacency tables of  complete graphs have  for all entries, except on the leading 

diagonal where all the entries are 0. For example the adjacency table of  K
4 
is:

A B C D

A 0   

B  0  

C   0 

D    0

Therefore, the number of  edges of K
n
 is given by 

n n

number of rows number of 1s per row
   

  ( )1 1

2
Adjacency tables of  complete graphs are symmetric with respect to the 

main diagonal, which means that we can deduce this result using 

columns instead of  rows.

Bipartite graphs

A simple graph G = (V, E ) is bipartite if  its set of  vertices V can be 

partitioned into two disjoint sets M and N such that each edge of  G 

connects a vertex of  M with a vertex of  N, i.e. M and N are such that 

M ∪ N = V and M ∩ N = ∅, often called a partition, and all the edges 

for the set E are of  the form XY such that X ∈ M, Y ∈ N. 

Example 

Consider the graph G in the diagram. 

a Write down its adjacency table.

b Explain how it shows that G is bipartite. State clearly the 

disjoint sets of  vertices M and N
A

B

ED

C

a
A B C D E

A 0   0 0

B  0 0  

C  0 0  

D 0   0 0

E 0   0 0

b M = {B, C} and N = {A, D, E} are the two 

disjoint sets because there are no 

connections among the vertices of  these 

sets, as shown in the adjacency table.

The entry a
ij
 =  if  two vertices are connected; 

otherwise a
ij
 = 0. 

Rearrange rows and columns of  the adjacency 

table to show the split in the sets 

M = {B, C} and N = {A, D, E}.

B C A D E

B 0 0   

C 0 0   

A   0 0 0

D   0 0 0

E   0 0 0

D

BA

C
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Bipartite graphs are also called 2-colourable in the sense that 

we could colour the vertices of  each split set in a di erent colour. 

This is a useful practical method to identify bipartite graphs: if  

we can colour the vertices using exactly two colours so that no 

two vertices with same colour connect, the graph is bipartite. 

A

B

ED

C

In Example 3, it is easy to show that the graph is bipartite by colouring 

or shading B and C. 

A bipartite graph is said to be a complete bipartite graph if  every 

vertex from M is adjacent to every vertex from N. The notation for a 

complete bipartite graph is K
m, n

 where |M| = m and |N| = n

The diagram in Example 3 (redrawn here at the right, with shaded vertices) 

shows a complete bipartite graph K
2, 3

 in the sense that all the vertices 

in the set M are connected to all the vertices in the set N

Theorem 5

The number of  edges of  the complete bipartite graph K
m, n

 is mn, 

i.e. |K
m, n

| = mn. 

Proof:

As each edge connects a vertex from M to a vertex from N, and each 

vertex of  M is connected to each vertex of  N, the number of  edges 

is given by |M|×|N| = mn. Q.E.D.

Exercise 4B

1 Observe the following graphs:

CD

E

A

B

D

C

A

E

F B

D

C

A

E

F B

CD

E

A

B

 graph 1 graph 2 graph 3 graph 4

D

C

A

E

F

G

B

CD

E

A

B

D

C

A

E

F B

D

C

A

E

F B

 graph 5 graph 6 graph 7 graph 8

 State which graphs are:

a bipartite b complete

c trees d disconnected.
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2 State the order |V| and size |E| of  each graph G = (V, E ) in question 1

3 Show that trees are bipartite graphs.

4 Prove that the following statements are equivalent:

G is 2-colourable G is bipartite

Every cycle of G has even length

5 A simply connected graph of  order 9 has all vertices with the 

same degree d. Find all possible values of  d.

6 Find the number of  vertices and edges for the following graphs.

a K
3,4

b K
3,7

c K
2,5

7  A complete bipartite graph K
m, n

 has altogether 24 vertices and 

128 edges. Find the number of  vertices in each set of  the partition.

8 Complete the proof  of  Theorem 3. 

EXAM-STYLE QUESTION

 Use the principle of  mathematical induction to show that a tree 

with n vertices has exactly n −  edges. 

For question 9 you may 

use weak or strong 

induction.

4.3 Di erent representations of the same graph

In the following sections we will need to identify properties of  graphs 

that may require that we redraw them. When doing so we need to be 

careful to produce representations of  the graphs in such a way that 

all the incidence relations are preserved. In other words, edges 

incident with vertices remain incident with them; vertices adjacent 

to other vertices remain adjacent with them. 

The diagrams below show you two representations of  a cube.

E F

GH

D C

BA

E' F'

G'H'

D' C'

B'A'

These graphs have 8 vertices, 12 edges and each of their vertices has degree 3.

When we produce two diagrams showing a solid we say that 

we actually draw two isomorphic graphs, i.e. graphs that have 

exactly the same properties like order, size, number of  connected 

components and sequence of  degrees. These properties are called  

As a formal study of 

isomorphic graphs is 

not part of the course, 

we will treat this topic 

informally.isomorphism invariants. 
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Useful isomorphism invariants: 

If  two graphs G and H are isomorphic, then:

● The size of  G equals the size of  H.

● The order of  G equals the order of  H.

● The sequence of  the degrees of  the vertices of  G is a 

permutation of  the sequence of  the degrees of  the vertices of  H

● The number of  connected components of  G and H is equal.

● The lengths of  the cycles of  G matches the lengths of  the cycles of  H

You need to be careful when using isomorphism invariants; even 

if  you check a few of  them you may fail to identify di erences 

between graphs. For example, the diagram below shows two 

connected graphs with 8 vertices, 2 edges, and all vertices have 

degree 3, but they have cycles with di erent lengths which makes it 

impossible for them to be isomorphic. This means that these two 

graphs are distinct in Graph Theory.

Example 

Justify why each pair of  graphs G and H cannot be isomorphic.

a G H b G
H

a For example, G and H have di erent sizes; 

G has two vertices with degree 3 and H has 

all vertices with degree 2; G has two cycles 

with length 3 (triangles) and H has just one 

cycle with length 4.

b G has four vertices with order 3 and one 

vertex with order 2 while H  has two vertices 

with order 2, two vertices with order 3 and 

one vertex with order 4; G has a cycle with 

length 4 but not H.

Use isomorphism invariants to identify 

di erences between the graphs.
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Exercise 4C

1 Consider the following pairs of  graphs. In each case, decide 

whether or not each pair are isomorphic. In the case that they are 

isomorphic, de ne an isomorphism f   between them; otherwise 

provide a justi cation as to why such an isomorphism cannot exist.

 a 

 b 

 c 

2 Draw two non-isomorphic graphs with 3 vertices and 2 edges. 

How many such non-isomorphic graphs are possible?

3 Draw two non-isomorphic graphs with 4 vertices and 3 edges. 

How many such non-isomorphic graphs are possible?

4 If  all the vertices of  a graph have the same degree we say the 

graph is regular.

Draw all possible non-isomorphic simple regular graphs with 

4 vertices.

5 A graph is said to be coloured with n colours if  a colour can 

be assigned to each vertex in such a way that every vertex has 

a colour which is di erent from the colours of  all its adjacent 

vertices. Show that the complete graph K
n

requires n colours to 

be coloured.
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4.4 Planar graphs

De nition

A graph G is planar if  and only if  we can draw it in a plane 

without any edges crossing over each other.

Such drawing of a 

planar graph G is 

a graph H isomorphic 

to G called a planar 

embedding of GCycles of  planar graphs divide the plane into regions called faces. 

This name comes from the planar representations of  polyhedra like 

the cube below. As you know, a cube has 6 faces and each face is a 

square. The planar representation of  a cube shows 6 cycles of  

length 4, each of  them enclosing a face. Note that one of  these 

faces is the region outside the graph.

E F

GH

D C

BA

E' F'

G'H'

D' C'

B'A'

All polyhedra can be represented by planar graphs. For example, 

the  ve Platonic solids can be represented by the graphs below:

tetrahedron cube octahedron dodecahedron icosahedron

All these graphs are called regular as all the vertices have the same degree. 

The Ancient 

Greek Plato 

described how he 

thought the  ve 

regular solids, now 

called the Platonic 

Solids, make up the 

four elements ( re, 

earth, water and air) 

and heaven. However, 

Platonic solids were 

used as art motifs 

even before Plato and 

they remained popular 

during the 

Renaissance among 

mathematicians and 

artists like Piero della 

Francesca, Luca 

Pacioli, and Leonardo 

da Vinci.

Example 

Show that K

, K

2
, K

3
, K

4
 are planar.

K1 K2 K3 K4

Draw planar graphs of  each graph.

We will show that K
n

for n ≥ 5 is not planar. Before we proceed 

with this proof  we need to introduce a few more concepts and results.
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Spanning trees

De nition

A subgraph T of  a graph G is called a spanning tree if  T is a tree 

and includes all the vertices of  G.

Example 

Draw two spanning trees for each of  these graphs.

a b

a or 

b or 

Eliminate edges until you remove all the cycles 

but still have a connected graph.

Eliminate edges until you remove all the cycles 

but still have a connected graph.

Complements of graphs

Let G = (V, E ) be a simple graph of  order n. Consider the representation 

of K
n

that has the vertices of  G. Then the complement of  G, denoted by 

G ′, is a graph that contains the same set of  n vertices V as the graph G,

and contains all the edges of  K
n
 that G does not contain.

The diagram below shows you a graph G with order 5, K
5 
, and 

G′ (the complement of  G ).

graph G K
5 

complement G′
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Note the number of  edges of  G together with 

the number of  edges of  G′ is equal to the 

number of  edges of  K
n
. This means that the 

complement of  K
n

consists of  all the vertices 

and no edges, i.e. a null graph or edgeless 

graph

Exercise 4D

1 Draw two spanning trees for each of  the following graphs:

a b c d 

2 Let G be a simple graph. Prove that G has a spanning tree if  and 

only if  G is connected.

3 Let G = (V, E ) be a simple connected graph. Given that |V| = v

and |E| = e, show that 2v − 2 ≤ 2e ≤ v2 − v

4 A graph is called self-complementary if  it is isomorphic to its 

complementary graph. State whether or not it is possible to  nd 

a self-complementary graph with:

a 4 vertices

b 6 vertices.

If it is possible, draw the graph and de ne the isomorphism 

between the graph and its complement.

Euler relation for planar graphs

Mini Investigation

Using models of  polyhedra, i.e. solids with  at faces, straight edges and sharp corners 

(for example objects with the shape of  cuboids, pyramids or prisms), create a table with 

the following headings:

Polyhedron
Number of

faces (f)

Number of

edges (e)

Number of

vertices (v)
f + v

Complete the table using as many di erent polyhedra as you can  nd. Then compare the 

values in the 3rd and 5th columns and write down a conjecture.

In Graph Theory the term null graph may appear 

with different meanings: sometimes null graph 

means order zero graph, i.e. the graph K
0
 with 

no edges and no vertices. In the context of the 

complement of a graph of order n, however, null 

graph means simply no edges, as the number 

of vertices must be n.
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The result obtained in the mini investigation is known as the Euler 

formula for polyhedra or planar graphs, because all polyhedra can 

be represented by a planar graph: one of  its nets. The Euler formula 

provides a relation between the number of  faces, edges and vertices 

of  any graph that can be drawn on the plane without crossing 

edges.

Theorem 6

Given a connected planar graph G, the number of  vertices v, edges 

e and faces f satisfy the formula: v − e + f  = 2.

Proof:

Consider a spanning tree T of  G. A tree has exactly one face: f  = . 

A tree with n vertices has n −  edges, thus e = v − . 

So, v − e + f  = v − (v − ) +  = 2.

To obtain G from T we need to add edges. For each edge added, 

the number of  faces increases by , leaving the Euler characteristic 

unchanged. Q.E.D.

Corollary 1

Let G be a connected planar graph with at least 3 vertices. 

Then e ≤ 3v − 6.

Proof:

If  G is a tree with at least 3 vertices, then the result follows easily. 

Note that the result is false if  v < 3.

If  G is not a tree then it contains at least one cycle, which means 

that each face is bounded by at least 3 edges.

So, 3f  ≤ 2e

The result follows now from Euler’s Theorem:

 v − e + f  = 2 ⇒ 3v − 3e + 3f  = 6

 3f  ≤ 2e ⇒ 3v − 3e + 2e ≥ 6 

 ∴ e ≤ 3v − 6 Q.E.D.

The expression 

v − e + f in 

Theorem 6 is called the 

Euler characteristic for 

polyhedra.

The work of Swiss 

mathematician 

Leonhard Euler covers 

so many  elds in 

mathematics and he is 

often the earliest written 

reference on a given 

matter. For this reason 

there are many 

theorems and formulas 

associated to his name. 

The Euler characteristic 

for polyhedra is an 

important example. This 

formula allows us to 

prove the existence of 

exactly 5 Platonic solids.
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Corollary 2

Let G be a connected planar graph with no triangles. 

Then e ≤ 2v − 4.

Proof:

We proceed as before but this time the minimum length of  a cycle 

is 4. So, each face is bounded by at least 4 edges. 

So, 4f  ≤ 2e

The result follows now from Euler’s Theorem:

v − e + f  = 2 ⇒ 4v − 4e + 4f  = 8 ⇒ 4v − 4e + 2e ≥ 8 

∴ e ≤ 2v − 4 Q.E.D.

These two corollaries of  Theorem 6 allow us to prove two 

important theorems.

Theorem 7

K
5
 is not planar.

Proof: 

K
5
 has 5 vertices and 0 edges. By Corollary , e ≤ 3v − 6. 

However, 0 ≤ 3 × 5 − 6 ⇒ 0 ≤ 9, which is a false statement. 

Therefore K
5
 cannot be planar.

Theorem 8

K
3,3

 is not planar.

Proof: 

K
3, 3

 does not contain a triangle since it is a bipartite graph and 

all its cycles have length of  at least 4. By Corollary 2, e ≤ 2v − 4. 

The number of  vertices is 6 while the number of  edges is 9, 

therefore 9 ≤ 2 × 6 − 4 ⇒ 9 ≤ 8, which is a false statement. 

Therefore K
3,3

 cannot be planar. Q.E.D.

If  we remove an edge from a graph, let’s call it AB, and we add 

another vertex C together with the edges AC and BC, such an 

operation is called an elementary subdivision as, graphically, 

they correspond to placing a new vertex on the edge AB. 

Graphs are called homeomorphic if  they can be obtained from 

the same graph by a sequence of  elementary subdivisions. 

The following theorem constitutes a very useful criterion for 

planarity and was established by Kazimierz Kuratowski in 930. 

A planar graph with no 

triangles is a planar 

graph with no cycles 

of length 3.
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The proof  of  this theorem is not included here, as its scope goes 

beyond what is required by the syllabus.

Theorem 9 (Kuratowski’s theorem):

A  nite graph is planar if  and only if  it has no subgraph 

homeomorphic to K
5
 or K

3,3.

Corollary

K
n

is not planar for n ≥ 5.

Example 

Show that the graph to the right (a Petersen graph) 

has a subgraph homeomorphic to K
3,3

.   

F

A

E

B D

C

F

A

E

B D

C

F

A

E

C

B D

F

A EC

F

C

A

E

B D

Remove the dashed edges and vertices that are 

not labelled.

Consider the subgraph of  the Petersen graph 

with vertices A, B, C, D, E and F which is 

isomorphic to K
3,3

Note that if  you start from K
3,3

 and reverse the 

process you can obtain the Petersen graph 

through elementary subdivision.

There are non-planar graphs but all the graphs are spatial in the sense 

that they can be embedded in 3D space without having edges crossing. 

In 3D, the planar graphs are exactly the ones that can be represented by 

polyhedral solids (but not necessarily regular polyhedra) or, equivalently, the 

ones that can be drawn on the surface of a sphere without having crossing 

edges. Regular and semi-regular polyhedral solids have beautiful planar 

representations due to their symmetry.
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Real life application – The soccer ball

The soccer ball has evolved much in the past 50 years. 

The original soccer ball was heavy and made of  

leather strips that absorbed water and made it di  cult 

for headers. The heavy leather laces were also painful 

during headers. The 970 World Cup introduced the 

modern ball, known as the “Buckyball”, made by the 

American architect and designer Richard 

Buckminster Fuller. Fuller’s ball, the classic black-

and-white, was covered with regular hexagons and 

pentagons rather than the old leather strips.

From a mathematical point of  view, the Buckyball is 

a very interesting object. As the surface of  a ball is 

covered by polygons, it can clearly be represented by a 

planar graph. Let p be the number of  regular 

pentagons and h be the number of  regular hexagons 

covering the ball. Then the number of  faces on the 

graph is p + h ; the number of  edges e satis es the 

equation 2e = 5p + 6h as each edge separates 

a hexagon from a pentagon or two hexagons; 

the number of  vertices v satis es the equation 

3v = 5p + 6h as all vertices have degree 3. Using the 

Euler formula for planar graphs we get v − e + f  = 2 

⇒ 6v − 6e + 6f  = 2 

⇒ (0p + 2h) − (5p + 8h) + 6(p + h) = 2 

⇒ p = 2

Around each pentagon we have 5 hexagons, 

so 5p = 3h. Therefore, h = 20 and

2e = 5 × 2 + 6 × 20 ⇒ e = 90

3v = 5 × 2 + 6 × 20 ⇒ v = 60.

So the Buckyball has 60 vertices, 90 edges and 32 

faces (of  which 2 are regular pentagons and 20 are 

regular hexagons). Take a classic black and white 

soccer ball and con rm these values. You may want 

to look at the new Brazuca ball too. Is it an interesting 

mathematical object?
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Exercise 4E

1 The diagrams show two planar graphs G and H.

a State the number of  vertices and the number of  edges for each.

b Use Euler’s formula to determine the number of  faces of  each graph.

A

F

E

B

C

D

LK

JG H

I

N

M P

Graph G Graph H

2 a Show that graph G in the diagram is planar.  
Use dynamic 

geometric software 

to draw a copy of 

the graph. Move 

the vertices around 

until no edges cross. 

The result is an 

isomorphic graph. 

A

DE

H

B

C

G

F

b Draw a planar representation H of  G and state clearly the isomorphism 

that maps G onto H. 

3 Consider the following graph G

B

A

D

G

J

E

H

K

I

L

C

F

a  Show that G has a planar representation.

b Hence state the size of  the graph and its order.

c Use Euler’s formula to  nd the number of  faces.

d State the name of  the regular polyhedron that can have the 

graph G as its representation. Justify your answer.
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4 Consider the graphs drawn below:

B

C

D

A

F

E

L

N

K

P Q

M

S

W

T

R

V

U

 Graph G
1
 Graph G

2
 Graph G

3

a Giving a reason, determine whether or not:

 i G
1
 is bipartite

 ii G
1
 is isomorphic to G

2

 iii G
3
 is planar.

b Draw the complement of  G
1
 and state its size.

c Explain why graph G
2
 can be represented by a polyhedron. 

Describe its faces. (You may want to sketch it  rst.)

5 A dodecahedron is a regular solid with 12 pentagonal faces. 

a State the number of  edges of  a dodecahedron.

b Use Euler’s formula to determine the number of  vertices 

of  this solid.

c Draw the planar representation of  a dodecahedron.

EXAM STYLE QUESTION

6 a A simple graph G has e edges and v vertices, where v > 2. 

Prove that if  all the vertices have degree at least k, then 2e ≥ kv

 b  Hence prove that every planar graph has at least one vertex of  

degree less than 6.

4.5 Hamiltonian cycles

In 1859, the Irish mathematician 

Sir William Rowan Hamilton devised a 

puzzle with a regular dodecahedron — one of 

the Platonic solids studied in section 4.4. 

Each of the 20 vertices was labelled with 

a different city of the world. The goal was 

to start at a city and travel along the edges 

of the dodecahedron, visiting each of the 

other 19 cities exactly once, and return back 

at the  rst city. Hamilton’s game was made 

of wood and the journey was marked off 

using a string and pegs. 
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In this section we will be looking at a way of  moving around a 

graph and introducing an important problem that will be extended 

further in chapter 5: can we always move around a graph and 

return to the starting point without visiting any vertex twice? 

The answer is clearly no. For example, if  we have a tree we 

cannot return to the starting point without retracing the same 

route and revisiting the same vertices (and edges) again. 

Clearly we need to reformulate the question, and ask for the 

conditions required for such a walk around the graph to result in 

a special cycle: a Hamiltonian cycle, with no repeated vertices.

So, when is it possible to  nd a Hamiltonian path or cycle? 

If  it exists, is it unique? Is there a method to  nd 

a Hamiltonian cycle systematically?

We know for sure that K
n
 for n ≥ 3 is Hamiltonian in the 

sense that it is possible to walk around the graph and visit 

each vertex exactly once and return to the starting point. 

In fact, as all vertices are connected we have n! di erent 

possible Hamiltonian cycles if  the order in which the vertices 

are visited is considered. For example, for K
4
 in the diagram, 

we can visit the following Hamiltonian cycles:

ABCDA, ABDCA, ACBDA, ACDBA, ADBCA, ADCBA

BACDB, BADCB, BCADB, BCDAB, BDACB, BDCAB, 

CABDC, CADBC, CBADC, CBDAC, CDABC, CDBAC, 

DABCD, DACBD, DBACD, DBCAD, DCABD and DCBAD.

However, if  we delete two edges the graph will no longer have 

Hamiltonian cycles. For example:

A
B

C
D

A
B

C
D

Dirac’s theorem, whose proof  goes beyond of  the requirements of  

the syllabus, provides a su  cient condition on the number of  edges 

incident with each vertex of  the graph for it to have Hamiltonian cycles: 

Theorem 10 (Dirac’s theorem): 

Let G = (V, E ) be a simple connected graph. If  |V | = n, n ≥ 3 

and for each vertex V V
i

V
i

n
 , ( )deg

2
 then the graph G has a 

Hamiltonian cycle.

In order to discuss this 

problem you may need 

to recall the de nitions 

of walk, path and cycle 

because precise language 

is a particularly important 

requirement in this area 

of the course.

A
B

C
D
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Look at the two previous diagrams; in both cases one of  

the vertices has degree  which is less than half  of  the 

order of  the graph. 

Gabriel Andrew Dirac 

(1925–1984) was born in 

Hungary and later adopted by 

physicist Paul Dirac, Lucasian 

professor of mathematics at the 

University of Cambridge and 

Nobel prize winner for Physics in 

1933. Gabriel Dirac was a pioneer 

in the development of Graph 

Theory. He became a professor of 

pure mathematics at the 

University of Aarhus in Denmark. 

Gabriel Dirac was a dedicated 

teacher and a source of 

inspiration for other 

mathematicians and researchers.

However, this fact alone does not allow us to conclude 

that the graphs are not Hamiltonian as Dirac’s theorem 

provides only a su  cient condition, but not necessary

conditions, for the existence of  Hamiltonian cycles. 

Also, once we establish the existence of  a Hamiltonian 

cycle there is no systematic way, i.e. an algorithm that 

can be executed by a computer, for  nding Hamiltonian 

paths or cycles. Let’s look at a few examples of  graphs 

and try to decide whether or not they are Hamiltonian 

and, if  so,  nd these paths and determine the number of  

possible cycles.

Example 

Show that these two graphs have Hamiltonian paths. 

State which graphs have also Hamiltonian cycles.

 A

B

C

D

E

 A

B

C D

E

F

 Has Hamiltonian paths. For example, 

BECDA is a Hamiltonian path. However, it 

is not possible to  nd a Hamiltonian cycle 

as vertex B has degree .

 Has Hamiltonian paths and cycles. For 

example, BFADCE is a Hamiltonian path 

and BFADCEB is a Hamiltonian cycle.

Find a walk that includes all the vertices of  the 

graph exactly once. To obtain a cycle you must 

return to the  rst vertex which is not possible in 

this case.

Find a walk that includes all the vertices of  the 

graph exactly once. To obtain a cycle, return to 

the initial vertex

De nition

A graph is said to be Hamiltonian if  it has at least one 

Hamiltonian cycle. A graph is semi-Hamiltonian if  it has at least 

one Hamiltonian path but no Hamiltonian cycle.
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Example 8 shows that a graph may have Hamiltonian paths but 

not Hamiltonian cycles. Graph 2 is a Hamiltonian graph while 

graph  is semi-Hamiltonian.

Exercise 4F

1 In the following graphs, determine whether or not it is possible to  nd

i a Hamiltonian path

ii a Hamiltonian cycle.

a A

C

D B

b

G

H

E

F

A

C

c A B

E

F C

D

d A B

E

F C

D

e

D

C

B
E

A f

LK

A B

HI GJ

EC FD

g

J

G

K

D

A

E

B

H

h
H B

DF

G

A

C

E

2 Draw a representation of  K
5
 and list all Hamiltonian cycles of  this graph. 

3 Prove that any bipartite graph containing an odd number of  vertices 

cannot contain a Hamiltonian cycle.

4.6 Eulerian circuits and trails

In this last section of  chapter 4 we are going to address the 

Königsberg bridge problem. 

A

C

The residents of  the city went for walks, trying to  nd a way to 

walk around the city in such a way as to cross each bridge only 

once and return to the starting point. (See page 03 for map.) 

Euler represented this situation by the multigraph shown here, 

where the city sections are represented by the vertices and the 

bridges are represented by the edges.
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Euler proved that a solution to this problem was not possible. In 

order to prove this result we need to introduce a few new terms 

and theorems.

Let G = (V, E ) be a connected graph. A trail where each edge from 

E appears exactly once is called an Eulerian trail. A closed trail or 

circuit with the same property is called an Eulerian circuit. 

Theorem 11

A connected graph contains an Eulerian circuit if  and only if  

every vertex of  the graph is of  even degree.

Proof:

If  the graph contains an Eulerian circuit we can arrive at and travel 

away from each vertex. Suppose that we start from one vertex and, 

as we follow the circuit from one vertex to another we erase each 

edge on which we travel. Every time we erase that edge, we reduce 

the degree of  the two adjacent vertices by . Eventually we arrive 

at the starting vertex and there are no more edges; therefore all the 

vertices have degree zero. We conclude that the reduced degrees at 

each vertex must be multiples of  2 (once for each edge adjacent to 

it or for a loop that has a degree of  2), and therefore even.

Conversely, if  we assume that each vertex has an even degree we 

can travel from and back to each vertex, therefore since the graph is 

connected we can form an Eulerian circuit. Q.E.D.

Corollary

Let G = (V, E ) be a connected graph. The graph G has an Eulerian 

trail if  and only if  it contains exactly two vertices of  an odd degree.

Proof:

Suppose there is an Eulerian trail starting from the vertex A and  nishing 

at the vertex B. Suppose that we follow this trail and erase each edge on 

which we travel. The  rst edge and the last edge contribute with only  to the 

degree of  the vertices A and B, while all the other edges contribute 

with 2 to the degree of  all intermediate vertices. We can conclude that 

A and B have odd degrees and all the remaining vertices have even degree.

Conversely, if  we call the vertices with the odd degree A and B and connect 

them with additional edge AB, the added edge contributes with a degree  

to the degree of  both vertices. The new graph has all the vertices of  even 

degree and therefore, by Theorem , it has an Eulerian circuit. If  we walk 

from vertex A and bypass all but the added edge, we will  nish at vertex B 

and we walk along an Eulerian trail. Q.E.D.

Note that in a simple 

graph, every cycle is 

always a circuit. However 

a circuit may not be a 

cycle as it may go through 

the same vertex more 

than once, even if it does 

not cross the same edge 

twice.
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The previous theorems are the key to Euler’s solution of  the Königsberg bridges.

C

D

C

D

The degrees of  the vertices are deg (A) = 5, and deg (B) = deg (C) = deg (D) = 3. 

Therefore by Theorem , no Eulerian circuit is possible in such a graph. 

So, the inhabitants of  Königsberg could not walk in a circuit that 

included all the bridges. 

Note that if  we take out one bridge it would be possible to  nd 

an Eulerian trail, but still not an Eulerian circuit.

Königsberg was heavily bombed during the  nal weeks of 

World War II. Two of the seven original bridges did not survive

the bombing. Two others were later demolished and replaced

by a modern highway. The three other bridges remain, although

only two of them are from Euler’s time. Thus, as of 2000, there

are now  ve bridges in Kaliningrad. The new graph has two vertices

of degree 2, a vertex of degree 3 and a vertex of degree 5. 

Therefore, an Eulerian path is now possible. 

Example 

State in which of  these graphs it is possible to  nd an Eulerian trail and/or an Eulerian 

circuit. Provide an example in each case or give a reason why it cannot exist.
E

A B

F

B

D

A

G E

C

F

B

D

A

G E

C

Graph 1 Graph 2 Graph 3

Graph  has Eulerian trails, for example: D→A→E→B

→A→C→B→D→C; it is not possible to  nd an 

Eulerian circuit as it has two vertices of  odd order.

Graph 2 is not Eulerian because the vertices B, D, E 

and G have odd order.

Graph 3 is Eulerian. For example A→B→C→D→A

→G→F→E→C→F→A.

Start and  nish with the vertices of  

odd order (C and D).

Use the Corollary of  Theorem .

Use Theorem .
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Exercise 4G

1 Determine whether or not in the following graphs it is possible to  nd

 i an Eulerian trail ii an Eulerian circuit.

a A

C

D B

b

G

H

E

F

A

C

c A B

E

F C

D

d A B

E

F C

D

e

D

C

B
E

A f

LK

A B

HI GJ

EC FD

g

J

G

K

D

A

E

B

L I

H

h

DE

A B

2 Given the complete graph K
4
 and a path of  length l between any 

two vertices in the graph,  nd the number of  di erent paths when:

a l = 2 b l = 3.

3 Given the complete bipartite graph K
3, 3

 and a path of  length l

between any two non-adjacent vertices in the graph,  nd the 

number of  di erent paths when:

a l = 3 b l = 4.

4 The  oor plan of  a certain shopping area is shown below. There are 

 ve rooms A, B, C, D, E and doorways are shown between the 

rooms and to the outside area O.

A E

D

a  Draw an appropriate graph representing the situation above 

where rooms will be associated to vertices and doorways 

between the rooms will be associated to edges between the 

corresponding vertices.

b  Is it possible to enter the shopping area and pass through 

each doorway only once before you exit? Justify your answer.

c  Is it possible to enter the shopping area and pass through 

each room only once before you exit? Justify your answer.
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EXAM STYLE QUESTION

5 Consider the simple graphs G and H

A

F

E

B

C

D

LK

JG H

I

N

M P

 Graph G Graph H

a Show that graph G has an Eulerian trail starting with 

vertex E, stating clearly the sequence of  vertices.

b Show that graph H has an Eulerian circuit.

c Decide whether or not G and H have Hamiltonian cycles.

6 Let G be a simple graph containing eight vertices.

a Show that G and the complementary graph G′ cannot both 

contain an Eulerian trail. 

b State with a reason whether or not the same is true for any 

simple graph containing an even number of  vertices.

7 There are  ve Platonic solids: the tetrahedron, the cube, 

the octahedron, the dodecahedron and icosahedron. 

a Draw the planar representation of  each Platonic solid.

b Suppose that m is the number of  edges that each region is 

bounded by, and n is the degree of  each vertex. Use Euler’s 

formula to show that each platonic solid must satisfy the 

inequality (m − 2)(n − 2) < 4. 

c Hence show that there are exactly  ve Platonic solids.

Review exercise
1 Consider a group of  5 people that meet at a party. Is it possible 

for each of  them to shake hands with:

a exactly 3 other people from the group

b exactly 4 other people from the group? 

 In each case, if  possible, represent the solution in a form of  a graph.
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2 For each graph below, write down:

a the number of  vertices

b the number of  edges

c the degree of  each vertex

d the adjacency table.

 Graph G Graph H Graph J

3 A graph is called r-regular if  all the vertices have the same degree r

a How many vertices does a 3-regular graph have if  it has 12 edges?

b Is it possible to have a regular simple graph with 14 edges? 

Explain your solution.

c How many regular simple graphs are there with p edges, 

where p is a prime number?

4 Explain whether or not it is possible to have a cycle of  odd length 

in a bipartite graph.

5 Prove that any subgraph of  a bipartite graph must be bipartite.

6 Determine whether or not the following graphs are isomorphic. 

Explain your answer.

 a b 

7 Given a complete graph K
5
,  nd the number of  trails between two 

of  its vertices with length no longer than 3.

8 State, with reasons, which of  these graphs are bipartite:

a b c d 
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EXAM STYLE QUESTION

9 Prove that if  a graph G with an odd number of  vertices is k-regular then k is even. 

10 A cycle C
n
, n ≥ 3, is a graph with n vertices of  order of  2, 

i.e. a 2-regular graph with order n. A wheel W
n
, n ≥ 3, is a graph 

that consists of  a cycle C
n
 and an additional point that is 

connected to all the vertices in the cycle. Here are some 

examples of  cycles and wheels:

C
3

W
3

C
4

W
4

C
5 

W
5

C
6

W
6

a Draw the complementary graph of  C
5
. Is the complementary 

graph isomorphic to the original graph? If  yes, construct an 

isomorphism between the two graphs.

b Show that the number of  edges in a wheel W
n
 is twice the 

number of  edges in a cycle C
n

c Are any of  these graphs C
n
 or W

n
 isomorphic to a complete graph K

n
?

11 Show that a cycle graph C
n
, n ≥ 3, is bipartite if  and only if  n is even.

12 Explain why no wheel graph W
n
, n ≥ 3, can be bipartite. 

13 a Show that C
n
, n ≥ 3, contains an Eulerian circuit.

b Investigate whether or not W
n
, n ≥ 3, contains an Eulerian circuit or trail.

14 Determine whether or not the following graphs are planar.

 a b c

 d e f

If  the graph is planar, draw one of  its planar embeddings; otherwise say 

why it cannot be planar.
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15 Given a 6-regular graph with 10 vertices,  nd the number of  regions 

the plane is divided into by a planar embedding of  the graph.

16 Given that a connected planar graph has 20 edges and it divides 

the plane into 15 regions,  nd the number of  vertices of  the graph.

EXAM STYLE QUESTIONS

17 A canal system divides a town built near the mouth of  a river 

into six land masses connected by fourteen bridges, as shown 

in the diagram.

B

E

A

D

F

C

a Draw a planar graph to represent this map.

b Write down the adjacency table of  the graph. 

c List the degree of  each of  the vertices. 

d State, with reasons, whether or not this graph has

 i an Eulerian circuit ii an Eulerian trail.

18 The graph G and its complement G′ are simple connected graphs, 

each having 12vertices. Show that G and G′ cannot both be planar.

19 A graph G has n vertices with degrees 1, 2, 3, …, n.

Prove that n ≡ 0 (mod 4) or n ≡ 3 (mod 4). 

20 a A connected planar graph G has e edges and v vertices.

 i Prove that e ≥ v – 1.

 ii Prove that e = v – 1 if  and only if  G is a tree. 

b A tree has n vertices of  degree 1, two of  degree 2, one of  degree 

3 and one of  degree 4. Determine n and hence draw a tree 

that satis es these conditions.
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Chapter  summary

De nitions:

A graph G = (V, E ) consists of  a set V of  vertices and a set E of  unordered pairs of  vertices 

called edges. The number of  vertices, |V|, is the order of  G and the number of  edges, |E|, 

is the size of  G.

Two vertices A and B are said to be adjacent if  they are joined by an edge. The number 

of  edges incident in a vertex V is called the degree of  the vertex and is denoted deg (V). 

Multigraphs are graphs that include multiedges and/or loops.

H = (V ′, E′) is called a subgraph of  a graph G = (V, E) if  and only if  V ′ ⊆ V and 

E ′ ⊆ E where V ′ ≠ ∅, and the edges in E′ are adjacent to the vertices in V ′.

A walk is a sequence of  linked edges. Usually we describe a walk by listing the vertices 

in order as we walk it. The length of a walk is its total number of  edges listed.

A path is a walk with no repeated vertices. 

The degree sequence of  a path lists the degrees of  the vertices in the order we pass 

through them as we walk along the path. 

A cycle is a walk that begins and ends at the same vertex, and has no repeated vertices. 

The length of a cycle is its total number of  distinct vertices listed. 

A trail is a walk with no repeated edges.

A circuit is a walk that begins and ends at the same vertex, and has no repeated edges.

Theorem 1 (Handshaking lemma): if  G = (V, E) and |E| = e then deg e
V

( )A
A




 2 .

Corollary: The number of  vertices of  odd degree in a graph G = (V, E) is always even. 

Classi cations of graphs: 

When the edges of  a graph/multigraph are assigned a number – the weight – we 

obtain a weighted graph. 

A directed graph or digraph is a graph where the edges have a direction associated 

with them. Digraphs can also be weighted graphs. 

A simple graph is an unweighted, undirected graph containing no loops or multiple 

edges. 

A graph is connected when there is a path from any vertex to any other vertex in the 

graph. A graph that is not connected is said to be disconnected.

Theorem 2: Let G be a simply connected graph of  order n, for n ≥ 2. Then G has 

at least two vertices with the same degree.

De nitions: A tree is a connected graph with no cycles. A forest is a graph without 

cycles. A subgraph T of  a graph G is called a spanning tree if  T is a tree and 

includes all the vertices of  G.
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Theorem 3: Let G = (V, E ) be a  nite graph with more than one vertex. 

The following statements are equivalent:

1 G is a tree.

2 Each pair of  vertices of G is connected by exactly one path.

3 If  a is an edge of  G, G − {a} is disconnected.

4 G is cycle-free and has n − 1 edges.

5 G is connected and has n − 1 edges.

De nition: The graph K
n

is called a complete graph of order n and it is characterized 

by the property ‘each vertex is adjacent to every other vertex’.

Theorem 4: Let K
n
 be the complete graph of  order n, n ∈ +. The number of  edges 

(the size) of  K
n
 is 

n n( )1

2
.

De nition: A simple graph G = (V, E) is bipartite if  its set of  vertices V can be 

partitioned into two disjoint sets M and N such that each edge of  G connects a vertex 

of  M with a vertex of  N.

Theorem 5: The number of edges of the complete bipartite graph K
m,n

 is mn, 

i.e.|K
m,n

| = mn.

Isomorphism invariants: If  two graphs G and H are isomorphic, i.e. we can 

redraw one to obtain the other one, then:

● The size of  G equals the size of  H.

● The order of  G equals the order of  H.

● The sequence of  the degrees of  the vertices of  G is a permutation of  the 

sequence of  the degrees of  the vertices of  H.

● The number of  connected components of  G and H is equal.

● The length of  the cycles of  G matches the lengths of  the cycles of  H.

De nitions: A graph G is planar if  and only if  we can draw it in a plane without any 

edges crossing over each other. H is called a planar embedding of  G. 

Cycles of  planar graphs divide the plane into regions called faces. Graphs are 

called regular if  all the vertices have the same degree.

Theorem 6: Given a connected planar graph G, the number of  vertices v, edges e and 

faces f  satisfy the formula: v − e + f  = 2.

Corollary 1: Let G be a connected planar graph with at least 3 vertices. Then e ≤ 3v − 6.

Corollary 2: Let G be a connected planar graph with no triangles. Then e ≤ 2v − 4.

Theorem 7: K
5
 is not planar.

Theorem 8: K
3,3

 is not planar.

Theorem 9 (Kuratowski’s theorem): A  nite graph is planar if  and only if  it has no 

subgraph homeomorphic to K
5
 or K

3,3
.
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Corollary: K
n

is not planar for n ≥ 5.

De nition: Let G = (V, E ) be a simple graph of  order n. Consider the 

representation of K
n

that has the vertices of  V. Then the complement of  G, 

denoted by G′, is a graph that contains the same set of  n vertices V as the graph G

and contains all the edges of  K
n
 that G does not contain.

De nitions: A graph is Hamiltonian when it is possible to walk around the graph, 

visit each vertex exactly once and return to the starting vertex, i.e. a closed path 

exists. A graph is Eulerian when it is possible to walk around the graph and cross 

each edge exactly once, i.e. a closed trail exists. A closed Hamiltonian walk is 

called a Hamiltonian cycle; a closed Eulerian trail is called an Eulerian circuit

Theorem 10: Let G = (V, E ) be a simple connected graph. If  |V| = n, n ≥ 3, and 

for each vertex V Vi V g
n

i
 , ( )de

2
 then the graph G has a Hamiltonian cycle.

Theorem 11: A connected graph contains an Eulerian circuit if  and only if  every 

vertex of  the graph is of  even degree.

Corollary: Let G = (V, E) be a connected graph. The graph G has an Eulerian trail 

if  and only if  it contains exactly two vertices of  an odd degree.
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Applications of 
Graph Theory5

CHAPTER OBJECTIVES:

10.9 Graph algorithms: Kruskal’s and Dijkstra’s.

10.10 Chinese postman problem. Travelling salesman problem. Nearest-neighbour 

algorithm for determining an upper bound. Deleted vertex algorithm for 

determining a lower bound.

Before you start

1 Recognize planar, Eulerian and 

Hamiltonian graphs and know the 

terminology used to study 

them, e.g. draw this graph 

in planar form. State a 

Hamiltonian cycle and 

explain why this graph 

is not Eulerian. 

A

B

C D

E

A planar form of  the graph 

is shown below right 

A

B

C D

E

ABCDEA is a 

Hamiltonian cycle as it 

goes through each 

vertex exactly once. 

This graph has 2 

vertices (B and D) with 

odd degree, therefore it is 

not Eulerian. It does contain an Eulerian 

trail, so it is semi-Eulerian.

2 Determine spanning trees of  graphs, e.g. 

draw two spanning trees of  the graph 

in question 1. As there are 5 vertices the 

spanning trees will have 4 edges and 

contain no cycles.
A

E

D
C

B

A

E

D

C

B

1 Draw the following graphs in planar 

form. State whether or not they are 

Hamiltonian and/or Eulerian.

 a A

B

C D

E

F

 b A

B

C D

E

F

2 Consider the graph in 1b. State, with 

reasons, the number of  edges of  a 

spanning tree of  this graph. Draw  ve 

distinct spanning trees of  this graph, 

including an example of  a rooted tree.
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Further algorithms and methods

The development of  technology is closely related to the development of  

mathematical algorithms that allow machines to perform routine (as well as more 

complex) tasks involving automated decision making. Whenever you use a search 

engine to  nd information or use a GPS to  nd the quickest way home you are 

using e  cient algorithms that analyze huge amounts of  information and rank 

options according to pre-selected criteria.

Algorithms have therefore changed the way we live but also the way we do 

mathematics. The importance of  this area of  mathematics is growing fast, and 

even areas previously closed to empirical approach are being challenged – proofs 

using computers are still a cause of  discussion in the mathematical community. 

In this chapter we are going to explore challenging problems in Graph Theory and 

learn algorithms to tackle them. You will also discover limitations of  these 

techniques and implications of  their applications.

The four-color theorem states that any map (in a plane) can be  lled 

in using four-colours such that regions sharing a common boundary 

do not share the same colour. F. Guthrie was the  rst to conjecture this 

theorem in 1852. Fallacious proofs were given by several mathematicians. 

In 1977, Appel and Haken constructed a computer-assisted proof showing 

that four colours were suf cient. However, because part of the proof 

consisted of an exhaustive analysis of many discrete cases by a computer, 

some mathematicians do not accept it. However, no  aws have yet been 

found, so the proof appears to be valid. 
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5.1 Graph algorithms: Kruskal’s and Dijkstra’s

Minimum Connector Problems

In this section we are going to look at e ective ways of  connecting 

all vertices of  a given graph, i.e. we are going to  nd the minimum 

spanning tree of  a given connected weighted graph. We start our 

study with a ‘greedy algorithm’ called Kruskal’s algorithm

Kruskal’s algorithm  rst orders the edges of  a graph by weight and 

then proceeds through the ordered list adding an edge to the partial 

minimum spanning tree, provided that adding the new edge does 

not create a cycle.  

A greedy algorithm

makes the locally 

optimal choice at each 

stage with the hope 

of  nding a global 

optimum. However, 

in many problems 

a greedy strategy 

does not produce 

an optimal solution, 

but nonetheless 

a greedy strategy 

may yield locally 

optimal solutions that 

approximate a globally 

optimal solution in a 

reasonable time.

Joseph Bernard Kruskal, Jr. (1928–2010) was an American 

mathematician, statistician, and computer scientist. In Graph Theory, 

his best known work is Kruskal’s algorithm for computing the minimal 

spanning tree of a weighted graph. 

Let’s use Kruskal’s algorithm to  nd a minimum spanning tree, 

let’s say T, of  a weighted graph G with n vertices:

 Select an edge with minimum weight to be the  rst edge of  T

 Consider the weighted edges of  G − T  which do not form a 

cycle with the already chosen edges of  T. Pick the one with 

minimum weight and add the new edge and vertex to T

(in case there is more than one with minimum weight, choose any of  them).

 Repeat step  until n −  edges have been chosen.

Example 

Apply Kruskal’s algorithm and  nd the minimum spanning tree 

of  this graph. 42

3
58

A

B

C
D

E

9
6

Start the tree T  with edge AB with weight 2;

42

3
58

A

B

C
D

E

9
6

42

3
5

9

8

6

A

B

C
D

E

add the edge BC, AE and BD. 

The minimum spanning tree has total weight 

2 + 3 + 4 + 8 = 7.

As the graph has 5 vertices, the tree will have 

4 edges. 

1  Select the edge with minimum weight to be 

the  rst edge of  T.

2 Consider the weighted edges of  G − {AB} 

which do not form a cycle with the already 

chosen edges of  T. Pick the one with 

minimum weight and add the new edge 

and vertex to T. 

3  Repeat until T has 4 edges. Add the weights of  

the edges of  the tree to obtain its total weight.
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To make the application of  this algorithm e  cient when dealing with 

large graphs we are going to use special adjacency tables – cost 

adjacency tables – where the entries represent the weight of  the 

edges. For example, the graph below shows the current network of  

streets between several villages where the weights represent 

the distance in kilometres.

When dealing with 

weighted graphs the 

adjacency tables are 

always cost adjacency 

tables. For simplicity 

in this chapter we 

will just call them 

adjacency tables.
6

4

8

5

2

5 5

4

7

9

3

A

B

C

D
E

F

The adjacency table for this graph is:

A B C D E F

A – 6 3 2 7 9

B 6 – 4 – – 4

C 3 4 – 8 – –

D 2 – 8 – 5 5

E 7 – – 5 – 5

F 9 4 – 5 5 –

Suppose that a bike path is to be added to some of  these 

streets in such way that:

● any two villages are connected

● the total length of  the path is the shortest possible.

This is a real life example where a minimum spanning tree is 

the solution to the problem: a solution is the tree with edges 

AD, AC, BC, BF and DE with total weight 8, i.e. the total 

length of  the path is 8 km (diagram, above right). 

6

4

8

5

2

5 5

4

7

9

3

A

B

C

D
E

F

Note that this is not the only optimal solution – another solution 

could have been obtained if  we chose the edge EF instead of  DE 

(diagram, below right).

Example 2 shows how to apply Kruskal’s 

algorithm to  nd a minimum spanning tree using an 

adjacency table. 

6

4

8

5

2

5 5

4

7

9

3

A

B

C

D
E

F
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Example 

Apply Kruskal’s algorithm to  nd the minimum 

spanning tree of  the graph G with this adjacency 

table. State the total weight of  the spanning tree. 

A B C D E F

A – 15 13 10 7 9

B 15 – 11 – – 4

C 13 11 – 6 – –

D 10 – 6 – 5 9

E 7 – – 5 – 8

F 9 4 – 9 8 –

Start the tree T with edge BF with weight 4;

A B C D E F

A – 15 13 10 7 9

B 15 – 11 – – 4

C 13 11 – 6 – –

D 10 – 6 – 5 9

E 7 – – 5 – 8

F 9 4 – 9 8 –

add the edge DE,

1  Select an edge with minimum weight to be 

the  rst edge of  T – this edge corresponds 

to the lowest non-zero entry on the table.

2  Consider the weighted edges of  G − {BF} 

which do not form a cycle with the already 

chosen edges of  T. Pick the one with 

minimum weight and add the new edge 

and vertex to T. 

A B C D E F

A – 15 13 10 7 9

B 15 – 11 – – 4

C 13 11 – 6 – –

D 10 – 6 – 5 9

E 7 – – 5 – 8

F 9 4 – 9 8 –

and then CD, AE and EF. 

15

11

6

5

10

9 8

4

7

9

13

A

B

C

D
E

F

The total weight of  the spanning tree is 

4 + 5 + 6 + 7 + 8 = 30.

3  Repeat until T has 5 edges. As the graph 

has 6 vertices, the tree will have 5 edges.

Watch for cycles being formed by drawing a 

sketch of  the tree T.

Add the weights of  the edges of  the tree to 

obtain its total weight.

Exercise 5A

1 Construct the adjacency table for each of  the weighted graphs.

a
6

8
11

14

5

10

7

6

12

A

B

C

D

E

b
6

3

4

8

5

2

7

9

A

B

C

D

E
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c

6

4

8

5

2
7

9
8

4

9

A

B

C

D
E

F

d

6

4

8

5

2

9 5

4

3

7

6

4

A

B

C

F

G

2 For each of  the graphs in question 1, apply Kruskal’s algorithm and 

 nd a minimum spanning tree for the graph. In each case state the 

total weight of  the tree.

3 For each of  the adjacency tables below:

 i draw the corresponding weighted graph, if  possible in planar form.

ii  apply Kruskal’s algorithm and  nd a minimum spanning tree 

for each graph.

iii  nd the total weight of  the minimum spanning tree found in ii

  a
A B C D E

A – 5 – 1 –

B 5 – 4 2 3

C – 4 – 6 –

D 1 2 6 – 3

E – 3 – 3 –

b
A B C D E

A – 5 – 1 –

B 5 – 4 – 3

C – 4 – 2 –

D 1 – 2 – 3

E – 3 – 3 –

  c
A B C D E F

A – 6 3 7 – –

B 6 – 4 2 – 5

C 3 4 – 5 – 4

D 7 2 5 – 5 –

E – – – 5 – 8

F – 5 4 – 8 –

d
A B C D E F

A – 6 3 10 – 7

B 6 – 4 2 – 5

C 3 4 – 5 – –

D 10 2 5 – 5 9

E – – – 5 – 8

F 7 5 – 9 8 –

 Show that the graph given by the adjacency table in:

a a is Eulerian. Hence state the length of  the Eulerian circuit.

b b is semi-Eulerian. Hence state the length of  the Eulerian trail.

 In a weighted graph G with 8 vertices, all the edges have di erent 

weights and all these weights are positive integers. Suppose that 5 is 

the weight of  the edge with least weight in G. Find the least possible 

value for the total weight of  a minimum spanning tree of  G.

Explain your reasoning.
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 In a weighted graph G with 0 vertices, all the edges have 

di erent weights. Let x be the weight of  the edge with least 

weight in G. Given that a minimum spanning tree of  G has 

a total weight of  90,  nd the maximum possible value of  x.

Explain your reasoning. 

 Joerg needs to install sockets that will be connected by an 

optical cable in his apartment so that he can watch TV, and 

use the phone and internet in all rooms. The positions of  

the sockets are shown on the graph. The distances 

between the sockets are given in metres. 
9.5

1.8

2.5

3.3

3.6

3.8

5.2

7.1
8.2

1.6

2.1

Given that the cost of  optical cable is €.20 per metre, 

 nd the minimum price Joerg will pay for buying the cable. 

8 Katharina plays a computer game in which 

she must visit rooms A, B, C, D, E, F, G, H 

and I in any order, and in each room she 

collects 0 points. The times, in minutes, 

between any two rooms in the  rst level of  

the game are given in the adjacency table 

shown. In order to advance to the next 

level of  the game she must visit all the 

rooms in the shortest possible time. 

A B C D E F G H I

A 0 2 3 4 0 0 2 0 0

B 2 0 3 2 3 0 0 0 0

C 3 3 0 0 0 4 0 0 3

D 4 2 0 0 2 0 4 0 0

E 0 3 0 2 0 5 0 4 0

F 0 0 4 0 5 0 0 0 2

G 2 0 0 4 0 0 0 6 0

H 0 0 0 0 4 0 6 0 5

I 0 0 3 0 0 2 0 5 0Decide whether or not Kruskal’s algorithm 

allows Katharina to  nd the minimum 

possible time that it may take her to visit all 

the rooms at the  rst level. Hence state where 

she should start if  she wants to score at least 

50 points within 0 minutes.

Shortest Path Problems

Given a connected, weighted (and possibly) directed graph G, 

we are going to  nd the path between two given vertices which 

has the least possible weight. 

A search algorithm is a 

procedure to  nd an item 

with speci ed properties 

among a collection of 

items. The items may be 

stored individually as data 

or may be elements of a 

search space de ned by a 

mathematical formula or 

procedure.

A shortest path tree, in Graph Theory, is a subgraph of  a given 

(weighted) graph constructed so that the distance between 

a selected root vertex and all other vertices is minimal.

Dijkstra’s Algorithm, conceived by Dutch computer scientist Edsger 

Dijkstra in 1959, is a graph search algorithm that solves the shortest 

path problem for a graph with nonnegative edge path costs (i.e. all the 

edges have nonnegative weights), producing a shortest path tree.

socket positions
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Dijkstra’s Algorithm

Start with an initial vertex. Let the distance of  a vertex be the 

distance from the initial vertex to it.  

Dijkstra’s Algorithm 

assigns initial distance 

values and tries to 

improve them step-by-step.
1  Assign to every vertex a distance value: zero for the initial 

vertex and in nity for all other vertices. 

2 Mark all vertices as unvisited. Set initial vertex as current.

3  For the current vertex, consider all its unvisited neighbours and calculate the distance 

to each one of  them. If  this distance to a neighboring vertex is less than the previously 

recorded distance then overwrite this distance. 

4  After considering all neighbours of  the current vertex, mark it as visited. A visited 

vertex will not be checked ever again; its distance recorded now is  nal and minimal.

5  Set the unvisited vertex with the smallest distance (from the initial vertex) as the 

next “current vertex” and continue from step 3

6 When all the vertices have been visited, STOP.

The following example shows how to apply Dijkstra’s Algorithm to a weighted but 

undirected graph.

Example 

Use Dijkstra’s Algorithm to  nd the shortest 

path between vertex B and each other vertex. 

Show all the steps of  the algorithm and draw 

the solution paths. 

A

6

45

1084

12
13

76
E

DF

C

B

G

H

Step A B C D E F G H
vertex 

added

1 3(B) 0 6(B) 10(B) ∞ ∞ ∞ ∞ B

2 ... ... 6(B) 10(B) 16(A) ∞ 11(A) 18(A) A

3 ... ... ... 10(B) 16(A) 21(C) 11(A) 18(A) C

4 ... ... ... ... 16(A) 21(C) 11(A) 18(A) D

5 ... ... ... ... 16(A) 16(G) ... 15(G) G

6 ... ... ... ... 16(A) 16(G) ... ... H

7 ... ... ... ... 16(A) ... ... ... F

8 ... ... ... ... ... ... ... ... E

A

6

45

1084

12

13

15

76
E

DF

C

B

G

H

Apply Dijkstra’s Algorithm 

starting from vertex B. State 

clearly which vertex you add 

at each step, its  nal 

distance to initial vertex B 

and mark the corresponding 

column on the table as 

inspected.

Draw the minimum 

connector tree from vertex B 

to each vertex; trace back 

from each vertex the path to 

the initial vertex using the 

information on the shaded 

entries of  the table.
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Limitation of Dijkstra’s Algorithm

Dijkstra’s Algorithm cannot be used if  any weights are negative, 

as labels may become permanent before the ‘cheapest’ route 

is considered.

A C

B

5

–53

For example, ACB is clearly the shortest route from A to B 

but it cannot be found with Dijkstra’s Algorithm. 

The following example shows you an application of  Dijkstra’s 

Algorithm in context. 

There are different 

methods of recording the 

information needed to 

apply Dijkstra’s Algorithm. 

However, despite apparent 

differences all the 

methods have in common 

the following necessary 

aspects:

● Starting vertex

● Total distance from 

each vertex to the 

starting vertex at each 

step

● Ordered record of the 

vertices already 

inspected and their 

 nal distance to 

starting vertex.
Example 

The graph shows the cheapest prices, in euros, 

of   ights between several European cities on a given 

day. Use Dijkstra’s Algorithm to  nd the cheapest 

route between Vienna and each other city on that day. 

Show all the steps of  the algorithm and draw 

the solution routes. 

4585

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

Step V B F R Z M
vertex 

added

1 0 85(V) 55(V) 105(V) 44(V) 45(V) V

2 ... 85(V) 55(V) 100(Z) ... 45(V) Z

3 ... 85(V) 55(V) 100(Z) ... ... M

4 ... 85(V) ... 100(Z) ... ... F

5 ... ... ... 100(Z) ... ... B

6 ... ... ... ... ... ... R

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

4585

55

56

44

V

B

F

R

M

Z

Apply Dijkstra’s Algorithm starting 

from vertex V. State clearly which 

vertex you add at each step, its  nal 

distance to initial vertex V and mark 

the corresponding column on the table 

as inspected.

Draw the minimum connector tree 

from vertex V to each vertex; trace 

back from each vertex the path to the 

initial vertex using the information on 

the shaded entries of  the table.

For example, the cheapest route from 

Vienna to Rome on that day is via 

Zurich. For all other cities, the direct 

 ights are the best deals.



Chapter 5 149

Exercise 5B

1 The graph G has this adjacency table.

 a Draw G in planar form. 

 b  Use Dijkstra’s Algorithm to  nd the shortest 

path between vertices A and D. Show all the 

steps in the algorithm and state the length 

of  the shortest path. 

A B C D E F

A − 3 − − − 9

B 3 − 7 − − 4

C − 7 − 8 4 3

D − − 8 − 2 −

E − − 4 2 − 8

F 9 4 3 − 8 −

2 Kristian is coordinating a project to design 

a road system to connect six towns, 

A, B, C, D, E and F. The possible roads 

and the construction costs, in hundreds of  

millions of  euros, are shown in the graph to 

the right. 

7

6

5

6

9

9 6

10

8

6

10

A

B

D

C

E F

Each vertex represents a town, each edge 

represents a road and the weight of  each edge 

is the cost of  building that road. Kristian 

needs to design the lowest cost road system 

that will connect the six towns.

 a  State the name of  an algorithm that allows Kristian to  nd 

the lowest cost road system.

 b  Find the lowest cost road system and state the cost of  

building it. Show clearly the steps of  the algorithm.

3 The diagram here shows the weighted graph G. 

9

2 4

8

7

3

8

4
6

A

B D

C

E

F

 a Write down the cost adjacency table for G.

 b  Use Kruskal’s algorithm to  nd and draw the 

minimum spanning tree for G. Your solution 

should clearly indicate the way in which the 

tree is constructed.

 c State with reasons whether or not the graph G

i is bipartite ii is semi-Eulerian.

5.2 Chinese postman problem

In 962, a Chinese mathematician called Kuan Mei-Ko was interested 

in a postman delivering mail to a number of  streets in a town such that 

the total distance walked by the postman was as short as possible. 

How can a postman in general ensure that the distance walked is 

a minimum?

In order to accomplish this task in an e  cient manner, the postman 

would ideally choose a route that would allow him to avoid walking 

the same street more than once.
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If  we represent the town by a simple graph G whose edges represent 

the streets where the postman must deliver the mail, then the 

postman problem becomes the problem of   nding an Eulerian trail. 

If  the postman is to end his route at the starting point, the solution 

must be an Eulerian circuit. As an Eulerian circuit contains every 

edge of  the graph exactly once, in the case of  a weighted graph, 

the total weight of  the circuit is the sum of  the weight of  all the edges. 

Example 

Consider the graph G here where each vertex 

represents a village that a postman needs to visit, 

and each edge is a road connecting two villages. 

The weights of  the edges represent the distances 

between the corresponding villages. 9

2 4

7

3

6

8

2

6

A

B
D

C

E

F

a Justify that G is an Eulerian graph.

b Find an Eulerian circuit and state its total length.

a All the vertices of  G  have even degree. 

Therefore the graph is Eulerian.

b ABDAFBCDEA is an example of  

an Eulerian circuit of  G. Its weight is 47.

deg(A) = deg(B) = deg(D) = 4 

deg(C) = deg(E) = deg(F) = 2

Start at any vertex and list the vertices in 

order as you move around the graph without 

crossing the same edge twice. Add the weights 

of  all the edges to obtain the total weight of  

the circuit.

The Chinese postman problem is an example of a routing problem. Routing 

is the process of selecting best paths in a network. Routing is performed 

for many kinds of networks, including the telephone network, electronic data 

networks such as the internet, but also transportation networks.

Now we are going to explore this problem further and  nd closed 

trails of  minimum weight containing every edge of  a graph G

that may contain some vertices of  odd order.

To  nd a minimum Chinese postman route we must walk along each 

edge at least once; we must also walk along the least pairings of  

odd vertices on one extra occasion.

Eulerian graphs 

and the terminology 

associated to them 

were studied in 

chapter 4.
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Chinese postman algorithm

1 List all odd vertices.

2 List all possible pairings of  odd vertices.

3 For each pairing,  nd the edges that connect the vertices with 

the minimum weight.

4 Find the pairings such that the sum of  the weights is minimized.

5 On the original graph, add the edges that have been found 

in step 4

6 The length of  an optimal Chinese postman route is the 

sum of  all weights of  the edges including the ones added 

to the total in step 4

7 Draw the route corresponding to this minimum weight.  

IB exam questions 

will not include cases 

with more than four 

vertices of odd degree.

Example 

Apply the Chinese postman algorithm to  nd the least weight 

closed trail containing every edge of  this graph. 

E

6

1

3

2

5

37

8
A

D

B

C

A, B, C and D are odd vertices.

The minimum weight connecting paths are:

AB 8, BC 3, AC 5, BD 6, AD 4, and CD 3.

Possible pairs where all odd vertices are connected 

are: AB and CD: 8 + 3 = , AC and BD: 5 + 6 = 

, AD and BC: 4 + 3 = 7.

Add the edges AED and BC to obtain an Eulerian 

graph.

A minimum weight trail must have total weight 

7 + 8 + 3 + 5 +  + 2 + 6 + 3 +  + 3 + 3 = 42

For example: AEABCBECDEDA

E

6

2

5

37

8
A

D

B

C

Step 1: List all odd vertices.

Step 2: List all possible pairings of  odd 

vertices.

Step 3: For each pairing  nd the edges 

that connect the vertices with the 

minimum weight.

Step 4: Find the pairings such that the 

sum of  the weights is minimised.

Step 5: On the original graph add the 

edges that have been found in Step 4.

Step 6: The length of  an optimal Chinese 

postman route is the sum of  the weights 

of  all the edges.

Step 7: Draw the route corresponding to 

this minimum weight.
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Exercise 5C

1 For each of  the following graphs:

 a Write down the vertices of  odd degree.

 b  Explain why it is impossible to walk along each edge exactly once 

and return to the starting vertex.

 c  Use the Chinese postman algorithm to  nd the route with minimum 

total weight that allows you to visit each edge at least once and 

return to the starting vertex.

E
D

476

A

CB 5

32 E
D

473

A

CB 2

32

7

5

7

32

6

3

2 4

A

B

D

E

F

   Graph R Graph S Graph T

2 Mr. Atente is a night guard and during the 

night shift he must patrol every single street 

of  a residential complex. The plan of  the 

streets and the time needed to patrol each 

street in minutes is shown in the diagram. 

30

15

27

35

12

48

25

23

20

37

17

55

11

22

A B

J I

C

H

G F

K

D

E

State, with reasons, if  it is possible for 

Mr. Atente to patrol the whole complex 

during his night shift from 0 p.m. until 6 a.m. 

If  it is possible, then state how many minutes 

he will have for a break. If  not possible, state 

how much longer he would need to stay in 

order to ful l his duty.

3 A snow-plough must drive along all the main roads shown on 

the graph, starting and  nishing at the garage at A. The distances 

shown represent kilometres.

 a  Show that the 

snow-plough must drive 

at least 25 km to clean 

all the roads shown.

b Find the least distance 

it must actually travel, 

showing clearly a 

possible route.

1

1

2

1

3

2

5

2

1

6

1

A
B

I H

G

D E
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5.3 Travelling Salesman Problem

To conclude our study of  Graph Theory algorithms we are going 

to look at the challenging problem of   nding a tour for a salesman 

that visits every city (vertex) of  a list (graph) exactly once. 

A Hamiltonian path (or 

traceable path) is a 

path in an undirected 

or directed graph 

that visits each 

vertex exactly once. A 

Hamiltonian cycle is 

a closed Hamiltonian 

path.

Meanwhile, the Hamiltonian problem evolved to a more sophisticated 

and complex problem: the problem of   nding a Hamiltonian cycle 

of  least total weight in a weighted graph G. Such is the nature of  

the famous Traveling Salesman Problem (TSP) that we are going to 

explore now. 

Note that the Travelling Salesman Problem is di erent from the 

Chinese postman problem as now the salesman must visit every 

city (vertex) rather than every street (edge). In fact this problem is 

still a challenge for mathematicians and so far there is no known 

algorithm that is simple enough to use to solve it. All we can do is 

list all possible routes and then decide which one is the shortest. 

This is called the brute force method but for a complete graph 

with n vertices we would need to analyze 
( 1)!

2

n

 cycles.  

Not all graphs G have 

Hamiltonian cycles. 

In these cases we 

duplicate edges to 

complete the network, 

i.e. we may cross the 

same edge more than 

once to visit a vertex.

Example 

Consider this Hamiltonian graph G. 

List all possible Hamiltonian cycles and 

their total weight. Hence state the optimal 

travelling salesman solution for the graph G. 

4

3

10

4

6

7

AB

C D

ABCDA (or ADCBA) has weight 7.

ACDBA (or ABDCA) has weight 27.

ADBCA (or ACBDA) has weight 24.

ABCDA or ADCBA or BADCB … have the same 

weight as they are just permutations of  the same 

edges. It is enough to list all cycles starting with A 

and watch for reverse order of  the edges.

The trouble with this brute force approach is that as the number of  

cities grows, the corresponding number of  round-trips to check quickly 

outstrips the capabilities of  the fastest computers. With 0 cities, there are 

more than 300 000 di erent round-trips. With 5 cities, the number 

of  possibilities soars to more than 87 000 000 000.
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So, this method is not suitable to tackle everyday problems if  we want to solve 

them in a reasonable amount of  time. The solution is to compromise and try to 

 nd lower and upper bounds for an optimal solution. The lower bound is the 

minimum distance that we must travel and the upper bound is the maximum. 

If  we  nd a lower bound of  25 and an upper bound of  27, then the optimal 

answer must be between these two numbers. So we want to  nd a lower bound 

as high as possible and an upper bound as low as possible. If  we are lucky and 

the bounds are the same number then this must be the answer to the problem!

The Nearest Neighbour Algorithm for upper bound

This is a basic, common-sense algorithm. You start at home and travel 

to the closest town that you have not yet visited. When you have visited 

every town you return home directly. It is the last part that can prove to be 

a long journey – the trip home. For this reason, this algorithm is not perfect 

but it is straightforward:

 Start at a selected vertex (let’s say home).

 The next city will be the closest as-yet-unvisited one

(If  there are two or more at the same closest distance, 

just pick any  one of  them).

 Go there.

 Repeat  and  until there are no unvisited cities.

 Go back home.

Example 8

Ewa wants to travel from Vienna and visit all the 

cities represented on the graph here. 4585

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

The labels of  the edges represent the price, 

in euros, of  the cheapest  ight available between 

the cities listed. Find the upper bound for the 

total cost of  her round trip.

Start from Vienna (V). Go to Zurich (Z).

Then to Munich (M), Berlin (B), Frankfurt (F), 

Rome (R) and return to Vienna (V).

So the cycle is VZMBFV which corresponds to a 

cost of  44 + 35 + 45 + 54 + 65 + 05 = € 348.

First vertex is V. VZ is the edge from V with 

minimum weight. From Z the minimum 

weight edge (apart from VZ) is MZ. From 

M the minimum weight edge to a city not 

yet visited is BM. From B the minimum 

weight edge to a city not yet visited is BF. 

Then the only vertex left is R.
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Deleted vertex algorithm for lower bound

 Delete a vertex and  nd the minimum spanning tree for 

what remains.

 Reconnect the vertex you deleted using the two edges with 

least weights.

 Repeat this process for all vertices.

 Select the highest total as the best lower bound.

Example 

Ewa wants to travel from Vienna and visit all the cities 

represented on the graph. 4585

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

The labels of  the edges represent the price, 

in euros, of  the cheapest  ight available between 

the cities listed. Find the lower bound for the 

total cost of  her round trip.

Delete V; the minimum spanning tree of  

G – {V} is:

45
85

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

Apply the deleted vertex algorithm for lower 

bound to each vertex:

1 Delete a vertex and  nd the minimum 

spanning tree for what remains.

2 Reconnect the vertex you deleted using 

the two edges with least weights.

This tree has weight 35 + 45 + 54 + 56 = 90

The two edges with least weights are VZ 

and VM. So, in this case the total weight is 

90 + 45 + 44 = 279

Delete M; the minimum spanning tree of  

G – {M} is shown on the right.

This tree has weight 44 + 54 + 55 + 56 = 209.

The two edges with least weight are MZ 

and MV. So, in this case the total weight is 

209 + 35 + 45 = 289.

3 Repeat this process for all vertices

45
85

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z
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Delete Z; the minimum spanning tree of  G – {Z} 

is shown on the right.

This tree has weight 44 + 45 + 54 + 65 = 208.

The two edges with least weight are MZ and 

VZ. So, in this case the total weight is 

208 + 35 + 44 = 287.

Delete R; the minimum spanning tree of  G – {R} 

is shown on the right.

This tree has weight 35 + 44 + 45 + 54 = 78.

The two edges with least weight are RZ and FR. 

So, in this case the total weight is 

78 + 56 + 65 = 299.

Delete F; the minimum spanning tree of  G – {F } 

is shown on the right.

This tree has weight 35 + 44 + 45 + 56 = 80.

The two edges with least weight are FB and FV. 

So, in this case the total weight is 

80 + 54 + 55 = 289.

Delete B; the minimum spanning tree of  G – {B } 

is shown on the right.

This tree has weight 35 + 44 + 55 + 56 = 90.

The two edges with least weight are BM and BF. 

So, in this case the total weight is 

90 + 45 + 54 = 289.

So the lower bound for this problem is 299.

45
85

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

4585

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

4585

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

45
85

55
54

65

99 35

56

45

105 44

- Vienna

- Berlin

- Rome

- Zurich

- Munich

- Frankfurt

V

B

R

Z

M

F

V

B

F

R

M

Z

Select the highest lower bound as the best 

lower bound.

Examples 8 and 9 show you that for the situation given the optimal 

solution lies between 299 and 348. Note that in the context given the 

algorithms analyze only the cost of  the trip. In real life many other 

factors are taken into account when selecting  ights. In general, search 

engines allow users to set additional conditions like times of   ights, 

duration, number of  stopovers and order possibilities according to 
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selected criteria. However, in most cases, due to limitations of  the 

algorithms available, the decision needs to be made by the user based 

on a much smaller number of  possibilities than the ones dealt with by 

the algorithms behind the machine.

The following example shows you a case where the lower bound and 

the upper bond are the same, allowing you to  nd an optimal solution 

for the Travelling Salesman Problem.

Example 

A complete graph G of  order 5 has edges with the weights 

shown in the diagram. 

2

6

5

2

5

3

6

4

2 4

R S

P

Consider the Travelling Salesman Problem for G

a Explain why the total weight of  the cycle PQSRTP 

is an upper bound for the Travelling Salesman 

Problem for G. 

b By removing the vertex P,  nd a lower bound for 

the Travelling Salesman Problem for G

c Hence state the total length of  the solution to the 

salesman problem for G

a The length of  any Hamiltonian cycle is 

always an upper bound for the Travelling 

Salesman Problem of  a graph.

2

6

5

2

5

3

6

4

2 4

R S

P

b Delete P; the minimum spanning tree for 

G – {P } is shown on the right.

This tree has weight 2 + 2 + 4 =8.

The two edges with least weight are PQ and 

PT. So, a lower bound for the Travelling 

Salesman Problem of  G is 8 + 3 + 4 = 5.

c As the lower and upper bounds found in 

parts a and b are equal to 5, the solution to 

the Travelling Salesman Problem for this 

graph must have length 5.

The upper bound is any value greater than 

or equal to the minimum total weight of  a 

Hamiltonian cycle of  the graph.

Note that the cycle given could be found 

using the nearest neighbour algorithm 

starting from P and then chosing S 

(but not R). 

2

6

5

2

5

3

6

4

2 4

R S

P

Add the total weight of  the tree with the 

weights of  the two edges with least weight.

Note that the cycle PQSRT is a solution of  

the Travelling Salesman Problem as its total 

weight is equal to the lower and upper 

bounds found.
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Sometimes we come across a Hamiltonian cycle that has a total weight 

equal to a lower bound. This is another situation that allows us to solve 

the Travelling Salesman Problem for a graph easily, as shown in the 

following example.

Example 

The complete graph H has this cost adjacency table.

A B C D E

A − 19 17 10 15

B 19 − 11 16 13

C 17 11 − 14 13

D 10 16 14 − 18

E 15 13 13 18 −

a By  rst  nding a minimum spanning tree on the subgraph 

of  H formed by deleting vertex A and all edges connected to A, 

 nd a lower bound for this problem.

b Find the total weight of  the cycle ADCBEA.

c Hence state the optimal solution for the Travelling Salesman Problem. Explain.

a
A B C D E

A − − − − −

B − − 11 16 13

C − 11 − 14 13

D − 16 14 − 18

E − 13 13 18 −

T = {BC, BE, CD}

This tree has weight  + 3 + 4 = 38.

Lower bound = 38 + 0 + 5 = 63.

b Weight of  cycle ADCBEA

= 10 + 14 + 11 + 13 + 15 = 63.

c ADCBEA gives a solution to the Travelling 

Salesman Problem for the graph G because 

its total weight is equal to the lower bound. 

Apply the deleted vertex algorithm for lower 

bound to each vertex:

1 Delete a vertex and  nd the minimum 

spanning tree T for what remains.

2 Add the weight of  the two edges with least 

weights that had been deleted from the  rst 

row/column of  the original table.

Add the weights of  all the edges in this cycle.

The cycle ADCBEA has optimal weight.



Chapter 5 159

Exercise 5D

1 Consider the weighted graph here.

3

4
8

76

8

5 6

A

E

C

DB

a Find a lower bound for the Travelling Salesman Problem for this graph.

b Find an upper bound for the Travelling Salesman Problem for this graph.

2 Consider the graph below where the vertices represent cities to be 

visited by a salesman. The weight of  the each edge indicates the 

distance between the cities incident with the edge.

7
6

8

11
7

9

9

7
6

7
5

5

7

10

8

A
B

D

C

E
F

H
G K

 a Use the Nearest Neighbour Algorithm for determining a least 

upper bound for the Travelling Salesman Problem.

b Use the Deleted Vertex algorithm for determining a lower 

bound for Travelling Salesman Problem.

3 Let G be the graph to the right.

 a  State the order and size of  the graph G. Hence, state 

whether or not the graph is complete. 
11

11

10

10

9

9

8

7

B E

A

 b  Find the total number of  Hamiltonian cycles in G, 

starting at vertex A. Explain your answer.

 c i Find a minimum spanning tree for the subgraph 

obtained by deleting A from G. 

 ii  Hence,  nd a lower bound for the Travelling Salesman Problem for G. 

 d  Give an upper bound for the Travelling Salesman Problem for the graph.

e Show that the lower bound you have obtained is not the 

best possible for the solution to the Travelling Salesman Problem for G.
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Review exercise
EXAM-STYLE QUESTIONS

1 Graph G has vertices A, B, C, D and E. Its adjacency table is:

A B C D E

A 0 2 1 1 0

B 2 2 1 1 0

C 1 1 2 0 2

D 1 1 0 0 0

E 0 0 2 0 0

 a Draw the graph G.

 b i De ne an Eulerian circuit.

  ii Write down an Eulerian circuit in G starting at A.

 c i De ne a Hamiltonian cycle.

  ii  Explain why it is not possible to have a Hamiltonian 

cycle in G.

2 The following diagram shows a weighted graph G.

4

5

3

4

8

7

4

6

6

9 6

A

B
D

C

EF

 a i Explain brie y what features of  the graph enable you to 

state that G has an Eulerian trail but does not have an 

Eulerian circuit.

  ii Write down an Eulerian trail in G.

b i Use Kruskal’s algorithm to  nd and draw the minimum 

spanning tree for G. Your solution should indicate the order 

in which the edges are added.

ii State the weight of  the minimum spanning tree. 

c Use Dijkstra’s Algorithm to  nd the path of  minimum total 

weight joining A to each other vertex in the graph, and show 

the weight of  each path. Your solution should clearly indicate 

the use of  this algorithm.
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3 The graph G has the following cost adjacency table.

A B C D E F

A − 20 − − − 89

B 20 − 65 − − 31

C − 65 − 73 31 20

D − − 73 − 12 −

E − − 31 12 − 73

F 89 31 20 − 73 −

a Draw G in planar form.

b Use Dijkstra’s Algorithm to  nd the shortest path between the 

vertices A and D. Show all the steps in the algorithm and state 

the length of  the shortest path.

4 The graph G has the cost adjacency 

table shown here.

a Draw G in planar form. 

A B C D E

A − 10 − 9 5

B 10 − 8 − 3

C − 8 − 8 4

D 9 − 8 − 6

E 5 3 4 6 −

b List all the distinct Hamiltonian cycles 

in G beginning and ending at A. 

(When one cycle is the reverse of  

another, you may consider the two 

identical.) Hence determine the 

Hamiltonian cycle of  least weight.

c Giving a reason, determine the maximum number of  

edges that could be added to G while keeping the graph 

both simple and planar.

5 The weights of  the edges of  a graph with vertices P, Q, R, S and T 

are given in this cost adjacency table.

P Q R S T

P – 20 25 21 26

Q 20 22 29 23

R 25 22 – 28 24

S 21 29 28 – 27

T 26 23 24 27 –

a Find an upper bound for the Travelling Salesman Problem for this graph.

b i Use Kruskal’s algorithm to  nd and draw a minimum 

spanning tree for the subgraph obtained by removing 

the vertex T from the graph.

ii State the total weight of  this minimum spanning tree and hence  nd 

a lower bound for the Travelling Salesman Problem for this graph.
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EXAM-STYLE QUESTION

6 The weighted graph G is shown here. 

5
6

7

3

6

5

11

6

3

1

6

5

2 2

6

6
8

5

4

A B

C

D

EF

G

H

I

J

K

 Consider the subgraph G′ of  G obtained by deleting vertex H from G

a Use Kruskal’s algorithm to  nd the minimum spanning tree 

of  graph G′ and state its weight.

b Hence  nd the weight of  a lower bound for the Hamiltonian 

cycle in G beginning at vertex H.

 c Prove that to  nd the Hamiltonian cycle of  least weight for 

the complete graph K
n
 with n > 3, at most 

1

2
( 1)!n  Hamiltonian 

cycles need to be examined. 

d Hence state the number cycles in G would have to be examined 

to  nd the one with the least weight.
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Chapter  summary
Kruskal’s algorithm to  nd a minimum spanning tree T, of  a 

weighted graph G with n vertices:

1 Select the edge with minimum weight to be the  rst edge of  T.

2 Consider the weighted edges of  G − T which do not form a cycle with 

the already chosen edges of  T. Pick the one with minimum weight 

and add the new edge and vertex to T (in case there is more than one with 

minimum weight, choose any of  them).

3 Repeat step 2 until n − 1 edges have been chosen.

Dijkstra’s Algorithm to  nd the shortest path between a selected root 

vertex and all other vertices: Start with an initial vertex. Let the distance 

of  a vertex be the distance from the initial vertex to it. 

1 Assign to every vertex a distance value: zero for the initial vertex and 

in nity for all other vertices.

2 Mark all vertices as unvisited. Set the initial vertex as current.

3 For the current vertex, consider all its unvisited neighbours and 

calculate the distance to each one of  them. If  this distance is less 

than the previously recorded distance then overwrite this distance. 

4 After considering all neighbours of  the current vertex, mark it as 

visited. A visited vertex will not be checked ever again; 

its recorded distance is now  nal and minimal. 

5 Set the unvisited vertex with the smallest distance 

(from the initial vertex) as the next “current vertex” 

and continue from step 3.

6 When all the vertices have been visited, STOP.

The Chinese Postman problem requires the shortest tour of  a graph which visits each 

edge at least once. For an Eulerian graph, an Eulerian cycle is the optimal solution.

The Traveling Salesman Problem requires the least total weight Hamiltonian cycle a 

salesman can take through each of  n given cities. No e  cient general method for  nding 

the solution is known yet.
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Chinese Postman algorithm to fi nd the shortest Eulerian cycle

1 List all odd vertices.

2 List all possible pairings of  odd vertices.

3 For each pairing,  nd the edges that connect the vertices 

with the minimum weight.

4 Find the pairings such that the sum of  the weights is minimized.

5 On the original graph, add the edges that have been found in Step 4.

6 The length of  an optimal Chinese postman route is the sum of  all 

weights of  the edges including the ones added to the total in step 4.

7 Draw the route corresponding to this minimum weight. 

The Travelling Salesman problem

The Nearest Neighbour Algorithm for upper bound

1  Start at a selected vertex (let’s say home)

2 The next city will be the closest as-yet-unvisited one.

(If  there are two or more at the same closest distance, 

just pick any one of  them).

3 Go there.

4 Repeat 2 and 3 until there are no more unvisited cities.

5 Go back home.

Deleted vertex algorithm for lower bound

1 Delete a vertex and  nd the minimum spanning tree for what remains.

2 Reconnect the vertex you deleted using the two edges with least weights.

3 Repeat this process for all vertices.

4 Select the highest total as the best lower bound.
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Answers
Chapter 1
Exercise A 

1 a 3392 b 964596 c 3489

2 a 14416
16 

b 4321120
5 

c 101011011
2

3 a 155
6

b 22201
6

c 1005
6

4 a 3052
7

b BDD
16

c 10010001
2

5 a 221212
5 

b 101010
2

c 3140
9

6 b = 7 

7 a n = 5 b (23
8
)2 = 551

8

Exercise B

1 a 6 b 4 c 24 d 3

2 a m = 28, n = −103 b m = 67, n = −89

 c m = 5, n = −13 d m = 93, n = −238

Investigation: Diophantus Riddle

3 n = 84 years old

Exercise C

1 i x
0
 = −1, y

0
 = 2 ii x = –1 + 3k, y = 2 – 5k

2 No solution

3 i x
0
 = 45, y

0
 = –15 ii x = 45 + 8k, y = –15 – 3k

4 No solution

5 i x
0
 = –4, y

0
 = 4 ii x = –4 + 3k, y = 4 – 2k

6 No solution

7 i x
0
 = 0, y

0
 = 9 ii x = k, y = 9 – 6k

8 i x
0
 = 40, y

0
 = –80

 ii x = 40 + 12k, y = −80 – 25k

9 i x
0
 = −201000, y

0
 = 1494000

 ii x = −201000 + 238k, y = 1494000 – 1769k

10 i x
0
 = −521534, y

0
 = 1060041

 ii x = −521534 + 1137k, y = 1060041 – 2311k

11 No solutions for c ={11, 13, 14, 15, 16, 17, 19} 

When c =12, the general solution is: 

x = 118 + 165k, y = −10 − 14k

When c =18, the general solution is:. 

x = −153 + 165k, y = 3 − 14k

12 Gino can buy either 4 bags of  dog treats and 

3 bags of  cat treats or 1 bag of  dog treats and 

7 bags of  cat treats.

Exercise D 

1 493 is not prime; it has 17 and 29 as factors.

2 19152 = 24 × 32 × 7 × 19

3 m = 4, n = −9

Exercise F

1 b 75420 = 23 × 32 × 5 × 11× 19 

4 a = 420 

5 a n = 2 × 32 × 55 × 7 = 3150 b 210

6 b gcd(p, q) = 22 × 3 × 5 × 7 × 11× 132

Review Exercise

1 a m = 9A0, n = 650

2 b 17, 19, 23, 29, 37, 47, 59, 73, 89, 107

 c Counter example: n = 17 ⇒ n2 + n + 17 

= 17 × 19

7 x = 27 + 79k, y = 122 + 357k

8 a (A, B) = { (9, 71), (30, 40), (51, 9)} b (9, 71)

Chapter 2
Skills check

2 a TBC b TBC 3 TBC

Exercise A

1 a 1 b 2 c 16

2 a No b No c No d Yes

 e No

8 a Yes b 8

11 c Converse is not true

Exercise B

1 a 17 b No inverse c No Inverse d 3

2 a 7  b 8 c 11

3 a 28k + 24 b 71k + 16 c 133k + 101

4 a k = 4

5 a d = 4 b A = 66, B = −71 c x = 156

Investigation – Mersenne primes and perfect numbers

n 2

0

k

k

n



 2n+  Prime 2 2

0

n k

k

n




 Perfect Number

  + 2 = 3 22  = 3 YES 2 × 3 = 6  + 2 + 3 = 6

2  + 2 + 4 = 7 23  = 7 YES 4 × 7 = 28  + 2 + 4 + 4 + 7 = 28

3  + 2+ 4 + 8 = 5 24  = 5 NO 8 × 5 = 20 No

4  + 2 + 4 + 8 + 6 = 3 25  = 3 YES 6 × 3 = 496
 + 2 + 4 + 8 + 6 + 3 

+ 62 +24 + 248 = 496

5  + 2 + 4 + 8 + 6 + 32 = 63 26  = 63 No 32 × 63 = 206 No

Conjecture +

=

= −
1

0

2 2 1

n

k n

k

If 2n − 1 is a prime number, then 2n−1 (2n − 1) is a perfect number.
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Exercise C

1 a 2  b 13 c 2601

Exercise D

1 x = 2 + 143k 2 x = 73 + 84k

3 x = 4 + 15k

4 a x = 51 + 140k b x = 58 + 60k

 c x = 45 + 154k

5 8   6 11 7 316

Exercise E

1 a 3  b 26 c 31

2 12

3 a 1  b 10

4 a x = 3 + 13k b x = 6 + 7k c x = 9 + 11k

5 8   8 b 82

Review Exercise

1 a x = 1 + 10k b x = 6 + 15k

2 c 4, 7

3 a m = 194, n = −25 b 194

 c x = 776 + 1001k d no solution

4 a x = 651 + 715k, for k ∈ 

 b 1366, 2081, 2796

5 a n = 1390
11
, m = 2270

11

7 a 109368= 23 × 32 × 72 × 31

8 c 1  9 x = 5, y = 4

Chapter 3
Skills check

1 a 2, 3, 2 and 3 b 4, 6, 10 and 18

2 a 1 and −2 b 0 and 1

3 18 and 3 4
5

6

Investigation on Fibonacci numbers

a The quotient between two consecutive terms 

converges quickly to Φ. This can be observed with 

the help of  a GDC spreadsheet. For example:

CBA D

19

20

21

22

23

1.6180338

1.6180341

1.618034

1.618034

1.618034

4181

6765

10946

17711

28657

18

19

20

21

22

n fn qn

D1

1.1 1.2

phi: = 
1.618034

2

1/99

1.1 1.2 1.3

1 + √5

b Repeat part a using other initial values for the 

sequence. For example:

CB D

1

2

3

4

5

0.6

0.6

2.6666667

1.375

5

3

8

11

19

0

1

2

3

4

fn qn

C1

1.1 1.2 1.3

CB D

19

20

21

22

23

1.6180336

1.6180341

1.6180339

1.618034

1.618034

15737

25463

41200

66663

107863

18

19

20

21

22

fn qn

C1

1.1 1.2 1.3

e Using results from parts c and d we have 

1 + Φ = Φ2, 1 + Φ2 = Φ3, 

1 + 3Φ = (1 + 2Φ) + Φ = Φ3 + Φ = Φ(Φ2 + 1) 

= ΦΦ3 = Φ4, …

 Therefore can re-write the sequence 1, Φ, 1 + Φ, 

1 + 2Φ, 2 + 3Φ, 3 + 5Φ,… as 1, Φ, Φ2, Φ3, Φ4, … 

which is a geometric sequence with  rst term 1 

and common ratio Φ.

f Let 


       
  

1 2

1 5

2 1 5

1 5 1 5

1 5

2

( )

( )( )
, 

i.e. Φ′ is the negative of  the reciprocal of  the 

Golden Ratio Φ

 As x x
2 1 0

1 5

2
   


. Therefore Φ′ is the 

other solution of  x2 – x – 1 = 0 and using the 

results in (c) – (e) we can conclude that 

1 + Φ′ = Φ′2, 1 + Φ′2 = Φ′3, … and the reciprocal 

Golden sequence can be written as 

1, Φ′, (Φ′)2, (Φ′)3, (Φ′)4,… 

Exercise A

2 a a
1
 = 2, a

2
 = 22 = 4, a

3
 = 42 = 16, a

4
 = 162 = 256 

and a
5
 = 2562 = 65536.

b 
+

= ∈
22 ,
n

n
a n 

5 a 1, 2, 3, 5, 8, 13, 21

 b

n F
i

i

n

2

0

 F
n
 × F

n+

 02 + 2 =   ×  = 

2 02 + 2 + 2 = 2  × 2 = 2

3 02 + 2 + 2 + 22 = 6 2 × 3 = 6

4 02 + 2 + 2 + 22 + 32 = 5 3 × 5 = 5

5 02 + 2 + 2 + 22 + 32 + 52 = 40 5 × 8 = 40
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Exercise B

1 a
− −

= ⋅ − ⋅  = +
1

1 13 1

3 1
3 2 2 3 1

n

n n

n n
u u

b = ⋅ − ⋅  = +
1

1 2 1

2 1
2 3 1 2 1

n

n n

n n
u u

c 
− −

− −
= − ⋅ + ⋅  = − +

( 1) 1

1 1
( 1) 2 2 ( 1) 1

n

n n

n n
u u

d
+− −

− −
= − ⋅ − + ⋅  = − +

1( 2) 1

2 1
( 2) ( 1) 2 ( 2) 1

n

n n

n n
u u

2 a u
n
= 11 ⋅ 2n–1 – 3n – 7 b = − −

5 1 5

4 2 4
3n

n
u n

3 b u
n
 = n2 + 1 

 c u
n–1

 = (n – 1)2 + 1 or u
n–1

 = n2 – 2n + 2

4 b = − + +3 23 1

2 2
10

n
u n n n

5 v
n
 = n and 

n
nu

7 u
n
 = 17 ⋅ 2n – 3n2 – 12n – 18 8

+

=
15 3

2

n n

n
u

Exercise C

1 a Option B is better if  L ≥ 24370.45 (2 d.p.)

b 629407.91 (2 d.p.)

2 € 2 074.35 3 L = 41135.72 (2 d.p.)

4 a r = 1.002263… (Approximately 0.226% 

per month).

b A = 521.75 (2 d.p.) c 1825.80

5 a w1

4

7
 and w2

25

49
 b w w

n n
 

3

7

1

7
1

c w
n

n

 





 1

14

1

7

1

2

1

d
1

2

Exercise D

1 a
⋅ + ⋅ −

=
2 4 3 ( 1)

5

n n

n
u b u

n

n

  5 1

2

( )

 c u
n
 = (n + 2) ⋅ 2n–1

d
θ

θ
θ θ= + ⋅

cos 1

sin
cos( ) sin( )

n
u n n

where θ = arctan2.

2 a i u
n+2

 – u
n+1

 = 2(u
n+1

 – u
n
) ii u

n
 = 3 ⋅ 2n

b i u
n+2

 – u
n+1

 = 4(u
n+1

 – u
n
) ii u

n

n

 2 4

3

3

 
− ⋅ − 

 =

1
20 8

2

3

n

n
P

4 a There is just one way to get to step 1: therefore 

V
1 
= 1.

There are two ways of  getting to step 2: climb 

1 step + 1 step or climbing two steps at a time. 

therefore V
2 
= 2.

From the third step on, to obtain the number 

of  way to get to the nth step, we just need to 

add the number of  ways of  getting to the 

(n – 2)th step (and then go up two steps) and 

with the number of  ways of  getting to the 

(n – 1)th step (and then go up one step). 

As these ways of  getting to the nth step are 

mutually exclusive, V
n
 = V

n−1
+ V

n−2
, for n ≥ 3.

b V
n
= F

n+1
, for n ≥ 1 c V

n

n


  1 1

5

( )n

6 L
n
 = Φn + (Φ′)n

Review Exercise

1 a u u
n

n

n

n

n  
 
 

   ( )
( )

( )3
3 1

3 1

3

4
3

1

4

b 
− ⋅ +

= ⋅ −  =
5 1 11 5 1

5 1 2
6 5 2

n n

n

n n
u u

c u
n
 = 9 ⋅ 6n + n + 1 d u

n

n
n   41 7 12 14

9

4 u
n
 + A ⋅ u

n−1
 + B ⋅ u

n 2
 = C, n ≥ 2

a A = −6, B = 7 and C = −7

b u
5
 = 2, u

6
 = −79 and u

7
 = −495

5 u
n n

n

n 























2

3 2 2
3 6sin cos

 

6 a a
n
 = 1.08a

n−1 
and a

0
 = 1000

b b
n
 = 100 + 1 ⋅ 08b

n−1
and b

0
 = 100

c a
n
 = (1.08)n ⋅ 1000 and b

n
 = (1.08)n ⋅ 1350 − 1250

d at least 17 years.

7 u
n

n
n

        1 3 1 1 3 3

8 v
n

n n

   
 1 2

3

1 2

9 The general solution is the form u
n
= A ⋅ 2n + B 3n

 
 
 
  

= ==  
= =

1

2

0 33
1 9

n

n

A u
u

B u

10 b ( ) ( )
θ

θ
θ θ

 
= + ⋅ ⋅ 
 

3 4 cos

sin
4cos sin 4 n

n
u n n

θ

θ

θ θ

θ θ

= − −

+ ⋅ − − ⋅
3 4 cos

sin

(4cos( ) 4cos(( 1) )

(sin( ) sin(( 1) ))) 4

n

n

v n n

n n

Chapter 
Skills check

1 a A ∩ B = {6}

 b A ∪ B = {2, 4, 5, 6, 7}

c A′ = {1, 3, 5, 7, 8} 

 d (A ∩ B)′ = {1, 2, 3, 4, 5, 7, 8} 

2

5 vertices, 8 edges and 5 faces. 

3 At least 5 samples
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Short Investigation on Handshaking Lemma

1 For example:

Graph Order Size
Degree of 

vertices

A B

CD

4 4

In 

alphabetic 

order:

, 3, 2, 2

A B

CD

4

6 

(including 

the loop)

In 

alphabetic 

order:

4, 3, 2, 3

A B

CD

E

5 7

In 

alphabetic 

order:

3, 4, 2, 3, 2

… … … …

2 The size of  the graph is equal to half  of  the sum 

of  the degrees of  all the vertices. 

3 and 4 Either all the vertices have even degree or the 

number of  vertices with odd degree appear in pairs.

Exercise A

1 a 8 vertices; b 14 edges;

c deg (A) = 3, deg (B) = 3, deg (C) = 3, deg (D) = 6,

deg (E) = 3, deg (F) = 3, deg (G) = 4 and deg (H) = 3.

 d
A B C D E F G H

A 0  0 0 0 0  

B  0   0 0 0 0

C 0  0   0 0 0

D 0   0    

E 0 0   0  0 0

F 0 0 0   0  0

G  0 0  0  0 

H  0 0  0 0  0

2 A B

CD

and     
A

B
C

D

E
F

a the graph has size 4 and order 4.

b the graph has size 14 and order 6.

3 There are several possible answers to this question.

a  Graph G
1
 has 6 vertices and 10 edges and Graph 

G
2
 has 6 vertices and 12 edges, for example:

A

B C

D

EF

and     A

B C

D

EF

b The adjacency tables for these graphs are

G


A B C D E F

A 0   0  

B  0  0 0 

C   0  0 0

D 0 0  0  

E  0 0  0 

F   0   0

G
2

A B C D E F

A 0   0  

B  0  0  

C   0  0 

D 0 0  0  

E   0  0 

F      0

4 12 vertices with degree 3 and 10 the number of  

vertices with degree 5.

Short Investigation on Trees

There are several possible trees with 5 vertices, e.g. 

A

B

C

D

E

No matter which pair of  vertices we choose, there is always 

only one path connecting them. The tree has 4 edges. If  we 

remove one edge the graph becomes disconnected, e.g. 
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A

B

C

D

E

 or 

A

B

C

D

E

For any trees you draw with 6, 7 or 8 vertices, the 

number of  edges is 5, 6 and 7 respectively. If  you 

remove any edge from these trees you obtain a 

disconnected graph.

Exercise B

1 a 3 and 4 b 6 and 8 c 4 d 2

2
Graph Order Size

 5 5

2 6 6

3 6 9

4 5 4

5 7 2

6 5 0

7 6 8

8 6 5

5 d ∈{2, 4, 6, 8}

6 a K
3,4

 has 7 vertices and 12 edges.

b K
13,17

 has 30 vertices and 221 edges.

c K
12,5

 has 17 vertices and 60 edges.

7 The sets of  the partition have 8 and 16 vertices.

Exercise C

1 a Not isomorphic because they have di erent 

degree sequences.

b  Not isomorphic because the  rst graph has 

three vertices of  degree 2 and the second one 

has just two.

c  Not isomorphic because they do not have the 

same number of  edges.

2 Let the vertices be A, B and C. There is one 

possible simple graph with size 2 and four 

non-isomorphic multigraphs:

A B

C

A B

C

A B

C

A B

C

A B

C

3 Let the vertices be A, B, C and D. There are three 

non-isomorphic simple graphs with size 3 and nine 

non-isomorphic multigraphs:

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

CD

A B

C

D

A B

C

D

A B

CD

A B

CD

A B

CD

A B

CD
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4 A B

CD

Simple, 

connected 

and regular.

A B

CD

A B

CD

Simple, 

regular but 

not 

connected.

A B

CD

Exercise D

1

Graph Spanning tree
Another 

spanning tree

(a)

(b)

(c)

(d)

4 a It is possible to have a self-complementary 

graph of  order 4 as shown in the diagram:

A B

D C

An isomorphism between the graph shown above 

and its complementary shown using dashed arcs 

is de ned by A → B; B → C; C → D; and D → A

Mini Investigation on Euler relation for 

planar graphs

Polyhedron
Number of 

faces (  f  )

Number of 

edges (e)

Number of 

vertices (v)
f  + v

Cube 6 2 8 4

Pentagonal 

prism
7 5 0 7

Tetrahedron 4 6 4 8

Hexagonal 

pyramid
7 2 7 4

Conjecture: e + 2 = f + v (or equivalent).

Exercise E

1 a Graph G: v = 6 and e = 9; graph H: v = 9 

and e = 12.

b  Graph G: 6 − 9 + f = 2 ⇒ f = 5; 

graph H: 9 − 12 + f = 2 ⇒ f = 5.

2 v = 8,  f = 10 and e = 16;

A

B

E

H

D

C

F

G

We can re-label the vertices 

in cyclic order and obtain a 

graph H isomorphic to G; 

the isomorphism that maps 

G onto H is de ned by:

A → A; B → B; C → E; 

D → H; E → D; F → C; 

G → F and H → G.

3 b The order of  G is 12 and its size 30.

c 20 d G represents an icosahedron.

4 a i G
1
 is bipartite: the set of  its vertices can be 

split into two disjoint sets M = {A, C, E} 

and N = {B, D, F} such that each edge 

connects a vertex in M with the vertex in N.

ii  G
1
 and G

2
 cannot be isomorphic as G

1
 has 

no triangular cycles and G
2
 does.

iii  G
3
 cannot be planar as it has 6 vertices, 

9 edges and 6 quadrangular faces:

R

S T

U

VW

R

S T

U

VW

  Face VTUR Faces SRUT, TUWV 

and SRUW

R

S T

U

VW

Faces RSTV and STVW

 Therefore it does not ful l the Euler identity for 

planar graphs.

 You can also show that G
3
 is isomorphic to G

1

and therefore non-planar.
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b  The complement of  G
1
 (which is isomorphic 

to K
3,3 

) has size 6.

A

F

E D

C

B

 c  G
2
 is clearly a planar graph and therefore it 

can be represented by a polyhedron whose 

faces correspond to the regions bounded by 

the cycles of  G
2
:

K L

NM

P Q

4 triangular faces: 

MPK, PQK, KQL, 

LQN

2 quadrangular faces: 

MNQP and MNLK

5 a 30 b 20 c

Exercise F

1 a, b, c, d and g are Hamiltonian graphs; e is 

semi- Hamiltonian graphs; f and h do not have 

any Hamiltonian paths.

2 There are 5! = 120 

Hamiltonian cycles.

Hint: Use software 

like Wolfram Alpha 

to generate them! 

B

D C

E

A

Exercise G

1 a is an Eulerian graph; d, f and h are 

semi-Eulerian.

2 a 12;  b 12

3 a 18  b 36

4 a A

B

C

D

E

O

 b No.  c No. 

5 c G is Hamiltonian. H does not have any 

Hamiltonian path.

6 b For order 4 it is possible to have both a graph 

and its complement semi-Eulerian as shown 

in the diagram below where the continuous 

lines represent a graph G and the dashed line 

its complement. These graphs are isomorphic

 and both are semi-Eulerian.

A B

D C

7 a

tetrahedron

cube

octahedron

dodecahedron icosahedron

Review Exercise

1 a No  b Yes

2

Graph v e
Degree 

sequence
Adjacency matrix

() 4 6 3, 3, 3, 3

A B C D
A 0   
B  0  
C   0 0
D    0

(2) 4  5, 6, 5, 6

A B C D
A 2   
B  2  2
C   0 3
D  2 3 0

(3) 5 5 2, 2, 2, , 3

A B C D E
A 2 0 0 0 0
B 0 0  0 
C 0  0 0 
D 0 0 0 0 
E 0    0

3 a 8 b No c r < v
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4 All the cycles in bipartite graphs have even length 

due to the fact that each vertex from a set of  the 

partition can just be adjacent to a vertex from the 

other set of  the partition. So as we move around 

the graph, we can just return to the same vertex 

after travelling an even number of  edges.

6 The graphs are not isomorphic because they have 

di erent degree sequences: one graph has two 

adjacent vertices with degree 2 and the other one 

not.

7 130

8 a not bipartite has it has a cycle of  odd length.

b  not bipartite has it has 12 edges and the 

maximum number of  edges of  a bipartite 

graph of order 6 is 9.

c  bipartite: M = {A, C, E} and N = {B, D, F} is 

a partition of  the vertices of  this graph. 

d not bipartite has it has a cycle of  odd length. 

10 a

B

D C

E

A

  complement of  C
5

The complement of  C
5
 is isomorphic to C

5

A → A, B → C, C → E, D → B, and 

E → D, de nes and isomorphism between C
5

and its complement. 

 c C
3
 is isomorphic to K

3
; W

3
 is isomorphic to K

4

12 No wheel graph W
n
, n ≥ 3 can be bipartite 

because one its vertices is connected to all 

other vertices and each of  the other vertices is 

connected to other vertices of  the outside cycle 

of  the wheel graph.

13 b W
n
, n ≥ 3 cannot contain an Eulerian trail 

because at least 3 of its vertices have odd degree 

3. W
n
, n ≥ 3 cannot contain an Eulerian circuit 

either as it contain vertices of  odd degree.

14 a The graph is planar 

as it has the following 

planar embedding: 

b The graph is planar 

as it consists of  two 

isomorphic connected 

components with the 

following planar 

embedding: 

c  This graph is not planar as it has the 

following subgraph isomorphic to K
5
:

d  This graph is not planar as it has the 

following subgraph isomorphic to K
3,3

:

e  The graph is planar as it has the following 

planar embedding:

f  The graph is planar as it has the following 

planar embedding:

15 22   16 7

17 a

B

E

A

D

F

C

b A B C D E F
A 0  2  2 2
B  0 0 0  2
C 2 0 0  0 
D  0  0  0
E 2  0  0 0
F 2 2  0 0 0

c  deg (A) = 8; deg (B) = 4; deg (C) = 4; 

deg (D) = 3; deg (E) = 4 and deg (F) = 5
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 d i This graph has no Eulerian circuit because 

it contains vertices of  odd degree; 

  ii  As it contain exactly two vertices of  odd 

degree (D and F), it is possible to  nd a 

Eulerian trail starting and ending at these 

vertices.

20 b 5

Chapter 5
Skills check

1 a
A

B

C D

E

F

not Eulerian; Hamiltonian.

b

A

B

C D

E

F

not Eulerian; Hamiltonian.

2 This graph 6 vertices; a spanning tree has 

6 − 1 = 5 edges. Here are 5 possible spanning 

trees of  this graph:

A

B

C D

E

F

A

B

C D

E

F

A

B

C D

E

F

A

B

C D

E

F

A

B

C D

E

F

Exercise A

1 a A B C D E

A – 6 8 0 7

B 6 –  6 2

C 8  – 4 –

D 0 6 4 – 5

E 7 2 – 5 –

b A B C D E

A – 6 3 2 7

B 6 – 4 – –

C 3 4 – 8 9

D 2 – 8 – 5

E 7 – 9 5 –

c A B C D E F

A – 6 – 2 7 9

B 6 – 4 – – 4

C – 4 – 8 – –

D 2 – 8 – 5 9

E 7 – – 5 – 8

F 9 4 – 9 8 –

d A B C D E F G

A – 6 – 2 – – 3

B 6 – 4 – – 4 –

C – 4 – 8 4 – –

D 2 – 8 – 5 9 7

E – – 4 5 – 5 –

F – 4 - 9 5 – 6

G 3 – – 7 – 6 –

2 a Start the tree T with the edge DE with weight 

5, then select AB and BD with weights 6 and 

 nally AC with weight 8.

The total weight of  the MST is 25.

 b  Start the tree T with the edge AD with weight 

2, then select AC with weight 3, BC with 

weight 4 and  nally DE with weight 5.

The total weight of  the MST is 14.

 c  Start the tree T with the edge AD with weight 

2, then select BC and BF with weights 4, 

then DE with weight 5 and  nally AB with 

weight 6.

The total weight of  the MST is 21.

 d  Start the tree T with the edge AD with weight 

2, then AG with weight 3, then select BC, BF 

and CE with weight 4 and  nally DE with 

weight 5.

The total weight of  the MST is 22.

3 a i

5

4

6

3
1

2

3
A

B

C

D

E

ii Start the tree T with the edge AD with 

weight 1, then select BD with weight 2, 

then BE with weight 3 and  nally BC with 

weight 4.

  iii The total weight of  the MST is 10.
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b i 

5

4

2

31

3A

B

C

D

E

ii Start the tree T with the edge AD with 

weight 1, then select DC with weight 2 

and  nally BE and DE with weights 3.

iii The total weight of  the MST is 9.

c i 

C

A

7

6
B

D

3

2

5

8

E

F

4

4

5

5

ii  Start the tree T with the edge BD with 

weight 2, then select AC with weight 3, 

then BC and CF, each with weight 4, and 

 nally DE with weight 5.

iii The total weight of  the MST is 18.

d i

6

10 3

7
4

5

5

9

8

5

2

A

B

D

E

C

F

ii Start the tree T  with the edge BD with 

weight 2, then select AC with weight 3, 

then BC with weight 4 and  nally BF and 

DE with weights 5.

iii The total weight of  the MST is 19.

5 56   6 6 7 17.88 euros 

8 Kruskal’s algorithm does not provide a solution 

to visit all the rooms as the solution is not an 

Hamiltonian path. Katharina can score 50 points 

if  she starts at G and visits G, A, C, I and F or if  

she starts at H and visits H, E, D, B and A. Note 

that you can reverse the order of  these paths to 

obtain other options.

Exercise B

1 a

3 9

7

4

8

43 2

8

A

B
F

C D

E

b 

Step A B C D E F
vertex 

added

1 0 3 (A) ∞ ∞ ∞ 9 (A) A

2 … … 0 (B) ∞ ∞ 7 (B) B

3 … … 0 (B) ∞ 5 (F) … F

4 … … … 8 (C) 4 (C) … C

5 … … … 6 (E) … … E

… … … … … … D

 The shortest path from A to D has length 6.

2 a Kruskal’s algorithm (to  nd the MST)

b  To obtain the MST for this graph add the 

edges CD, CF, EF, AC and BC. This tree has 

total weight 29 (i.e. the minimum cost of  this 

road system is 29 hundred million euros).

7 8

10

6

5

10

69

6
9

6

A

B

D

C

FE

3 a A B C D E F

A – 9 – – – 8

B 9 – 2 3 4 –

C – 2 – 4 – –

D – – 4 – 6 7

E – 4 – 6 – 8

F 8 – – 7 8 –

b  Add the edges BC, BD, BE, DF and AF. 

The MST has weight 24.

2
4

3

9
7

64

8

8

B

C

D

A F

E
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c i The graph contain triangles. Therefore it 

cannot be bipartite.

2
4

3

9

7

64

8

8

B

C

D

A F

E

ii  The graph is semi-Eulerian because 

it has exactly two vertices with odd 

degree: E and F. An Eulerial trail is 

EBCDBAFEDF.

2
4

3

9
7

64

8

8

B

C

D

A F

E

Exercise C

1 a Graph R: B and E; graph S: B and E; 

graph T: B, C ,D and F

b  Graphs 1 and 2 have two vertices of odd degree

and graph 3 has 4 vertices of  odd degrees. 

Therefore these graphs are not Eulerian.

 c  For graphs 1 and 2 there is just a pair of  

vertices with odd degree. Therefore it is 

enough to duplicate the edges along the 

shortest path between these vertices as 

shown in the diagrams below. For graph 3 

we need to inspect all possible combinations 

of  pairing of  vertices of  odd order: 

B and F, and C and D

B and C, and D and F

B and D, and C and F

For each case  nd by inspection the length 

of  the shortest path between the pair of  

vertices: 

B and F: 2, and C and D: 7. Therefore this 

pairing has total weight 9

B and C: 5, and D and F: 8. Therefore this 

pairing has total weight 13

B and D: 10, and C and F: 4. Therefore this 

pairing has total weight 14

Therefore the best pairing option has total 

weight 9 as shown in the diagram below.

Graph  Graph 2 Graph 3

Diagram 

showing 

additional 

edges

6 4

32

7

5

A DE

3

2

4

3

2

7

A

B C

DE

7

5

7

32
6

3

2 4

A D

E

F

Total 

weight of  

all the 

edges:

25 6 39

Weight of  

additional 

edges

7 2 + 3 = 5 2 + 7 = 9

Total 

weight of  

the 

shortest 

path:

25 + 7 = 32 6 + 2 + 3 

= 2

39 + 2 + 7 

= 48

2

3 30

Exercise D

1 a 26  b 30

2 a 68  b 58

3 a order 5 and size 10; complete graph 

b 12

c i

9

11

11

10

8

10

97

A

B

C D

E

This tree has weight 26.

ii 43

d 46

Review Exercise

1 a

B

A

D

E

 b i an Eulerian circuit is one that contains 

every edge of  the graph exactly once

ii  a possible Eulerian circuit is 

A → D → B → B → C → C → E →

C → A → B → A
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c i A Hamiltonian cycle passes through each 

vertex of  the graph exactly once

ii  To pass through E, you must have come from 

C and must return to C. Hence there is no 

Hamiltonian cycle for G

2 a i The vertices B and D have odd degrees. 

Therefore there is no Eulerian circuit for 

this graph but it is possible to  nd a trail 

with endpoints at the vertices B and D.

ii B → A → F → B → C → F → E →

C → D → A → E → D

b i Add AD, AB, DC, CF and CE.

4

5 4

8

7

6

4 6

6

3

9

A

B

C

D

EF

ii The weight of  this spanning tree is 21.

c

Step A B C D E F
vertex 

added

1 0 4 (A) ∞ 3 (A) 6 (A) 9 (A) A

2 … 4 (A) 7 (D) … 6 (A) 9 (A) D

3 … … 7 (D) … 6 (A) 9 (A) B

4 … … 7 (D) … … 9 (A) E

5 … … … … … 9 (A) C

… … … … … … F

3 a

20 65

73

12

73

89

31

20 31

A

B

C

D

EF

 b

Step A B C D E F
vertex 

added

1 0 20 (A) ∞ ∞ ∞ 89 (A) A

2 … … 85 (D) ∞ ∞ 5 (B) B

3 … … 7 (F) ∞ 24 (F) … F

4 … … … 58 (C) 6 (F) … C

5 … … … 28 (E) … … E

… … … … … … D

Shortest path has length 128.

4 a 10

8

8

9

5 3

6 4

A B

CD

E

b The distinct Hamiltonian cycles are

ABCDEA

  ABCEDA

  ABECDA

  AEBCDA

The weights are 37, 37, 34, 33 respectively.

The Hamiltonian cycle of least weight is AEBCDA.

c  For a simple planar graph containing 

triangles, e ≤ 3v − 6. Here v = 5, so e ≤ 9.

There are already 8 edges so the maximum 

number of  edges that could be added is 1.

  This can be done eg AC or BD

5 a One upper bound is the length of  any cycle, 

eg PTQRSP gives 120.

b i Using Kruskal’s algorithm, the edges are 

introduced in the order PQ, PS and QR.

20

22

28

21

26 23

27 24

25 29

P Q

RS

T

ii 108

6 a As there are 10 vertices we have 9 choices.

Choice Edge Weight

1 IG 1

  2 JE 2

2 JF 2

4 ED 3

4 AI 3

6 DK 4

7 AB 5

7 FG 5

9 BC 6

Total weight = 31

5 6

7

3

6

5

11

6

3

1

6

5

2 2

6

6 8

5

4

A B
C

D

EF

G

H

I

J

K

b 48  d
( )!11 1

2
1814400



 .
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Index

A

adjacency tables 105

cost adjacency tables 143–4

algorithms 141

Chinese Postman 

algorithm 151–2

deleted vertex algorithm for 

lower bound 155–9

Dijkstra’s Algorithm 146–9

Euclidean algorithms 16–19

greedy algorithms 142–6

Kruskal’s Algorithm 142–6

Nearest Neighbour algorithm for 

upper bound 154

search algorithms 146

amortizations 90–1

B

bases 4–13

binary code 10–11

Binet, Jacques 80

Binet’s formula 80

Brahmagupta 4, 61

Buckyballs 124

C

chemical compound models 108

Chinese Postman Problem 149–50

Chinese Postman 

algorithm 151–2

Chinese Remainder Theorem 57–63

circuits 109

Eulerian circuits and trails 129–33

Clay Mathematics Institute 27

co-prime integers 28

composite integers 26

compound interest 91

computer science 111

congruences 44

congruence modulo n 42–8

modular inverses and linear 

congruences 48–53

systems of  linear 

congruences 57–63

constant coe  cients 94–8

converting miles into 

kilometers 101

cost adjacency tables 143–4

counting problems 83–9

cryptography 41

cycles 109

Eulerian circuits and trails 129–33

Hamiltonian cycles 126–9

length of  a cycle 109

using cycles for powers 

modulo n and Fermat’s Little 

Theorem 64–71

D

deleted vertex algorithm for lower 

bound 155–9

denary (binary) 10–11

digraphs 109

Dijkstra, Edsger 146

Dijkstra’s Algorithm 146–9

limitation of  148

Diophantus of  Alexandria 20

Diophantus Riddle 20

linear Diophantine 

equations 21–6

Dirac, Gabriel Andrew 127–8

Dirichlet, Gustav Lejeune 53

division theorem 15–16

greatest common divisor 16

divisors 13–30

E

Eratosthenes 26

Euclid’s Lemma 33

Euclid’s statement 28–30

Euclidean algorithms 16–19

Euler relation for planar 

graphs 120–3

Euler, Leonhard 103, 121

Eulerian circuits and trails 129–33

Chinese Postman Problem 149–52

F

factors 13–30

Fermat, Pierre de 68

Fermat’s Last Theorem 53

Fermat’s Little Theorem 69–71

Fibonacci 78

Fibonacci numbers 79–80

Fibonacci sequence 94

 nancial problems 89–90

 rst-degree linear recurrence 

relations 83–9

general solutions of   rst-degree 

recurrence relations 100

homogeneous relations 100

modelling with  rst-degree 

recurrence relations 89–93

forests 111

four-colour theorem 141

Fundamental Theorem of  

Arithmetic 33–7

alternative direct proof  35–6

every positive integer n greater 

than 1 can be written uniquely 

as a product of  primes 34

G

games 92–3

Gauss, Carl Friedrich 41

Germain, Sophie 42

Golden Ratio 101

Golden sequence 79–80

graph theory 102–3, 140

algorithms and methods 141

Chinese postman problem 149–52

classi cation of  graphs 104–8, 

108–15

deleted vertex algorithm for 

lower bound 155–9

di erent representations of  the 

same graph 115–17

Eulerian circuits and trails 129–33

Hamiltonian cycles 126–9

minimum connector 

problems 142–6

Nearest Neighbour algorithm for 

upper bound 154

planar graphs 118–26

shortest path problems 146–9

terminology 104–8

Travelling Salesman 

Problem 153–4

graphs 104–8

2-colourable graphs 114

adjacent vertices 104

bipartite graphs 113–15

complements of  graphs 119–20

complete bipartite graphs 114

complete graphs 112–13

connected graphs 110–11

cost adjacency tables 143–4

criterion for planarity 122

de nition 104

degree of  vertex 105

directed graphs 109

disconnected graphs 110

edgeless graphs 120

elementary subdivisions 122

Euler relation for planar 

graphs 120–3

forests 111

Hamiltonian graphs 128

Handshaking lemma 106–7

homeomorphic graphs 122

incident vertices 104

isomorphism invariants 116–17

minimum spanning tree 142
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graphs (continued)
multiedges and loops 105
null graphs 120
order and size 104
partitions 113
planar graphs 118–26
regular graphs 118
representations 115–17
self-complementary graphs 120
semi-Hamiltonian graphs 128
shortest path tree 146
simple graphs 109
spanning trees 119
subgraphs 107
trees 111–12
weighted graphs 108

greedy algorithms 142–6

H

Hamilton, Sir William Rowan 126
Hamiltonian cycles 126–9
Handshaking lemma 106

corollary 107
Hilbert, David 21, 27

I

integers 13–26
prime numbers 26–30

investments 91
isomorphism invariants 116–17

K

Königsberg bridges problem 103, 
129–33

Kroneker, Leopold 13
Kruskal, Joseph Bernard 142
Kruskal’s Algorithm 142–6
Kuan Mei-Ko 149
Kuratowski, Kasimierz 122–3

L

Leonardo de Pisa 78
linear congruences 48–53

systems of  linear 
congruences 57–63

linear Diophantine equations 21–6
corollary 22

loans 90–1
Lucas numbers 98
Lucas, François Édouard 

Anatole 98

M

Mersenne, Marin 29
modular arithmetic 40

Chinese Remainder 
Theorem 57–63

congruence modulo n 42–8
from Gauss to cryptography 41–2
modular inverses and linear 

congruences 48–53

Pigeonhole Principle 53–6
using cycles for powers 

modulo n and Fermat’s Little 
Theorem 64–71

modular inverses 48–53
modulo n 42–8, 64–9
multigraphs 105
multiples 13

least common multiples 35–7

N

Nearest Neighbour Algorithm for 
upper bound 154

number systems 2
Fundamental Theorem of  

Arithmetic and least common 
multiples 33–7

history of  number systems 3–4
integers, prime numbers, factors 

and divisors 13–30
number systems and bases 4–13
Rules of  Brahmagupta 4
strong mathematical 

induction 30–3

O

octal (Base 8) 11

P

paths 109
degree sequences 109

perfect numbers 29
Pigeonhole Principle 53–6
planar graphs 118–26

Euler relation for planar 
graphs 120–3

faces 118
planar embedding 118

Plato 118
prime integers 26
prime numbers 26–30

Mersenne primes 29
probability problems 92–3

R

recurrence relations 78–83
de nition 80
modelling with  rst-degree 

recurrence relations 89–93
second-degree linear 

homogeneous recurrence 
relations with constant 
coe  cients 94–8

solution of   rst-degree linear 
recurrence relations and 
applications to counting 
problems 83–9

recursive patterns 76
games and probability 

problems 92–3
investments and compound 

interest 91

loans and amortizations 90–1
modelling and solving problems 

using sequences 77
modelling with  rst-degree 

recurrence relations 89–93
recurrence relations 78–83
second-degree linear 

homogeneous recurrence 
relations with constant 
coe  cients 94–8

solution of   rst-degree linear 
recurrence relations and 
applications to counting 
problems 83–9

re exive 44, 45
relatively prime integers 28
remainders 43

Chinese Remainder 
Theorem 57–63

Riemann Hypothesis 27
Riemann, Bernhard 27
RSA encryption 41

S

second-degree linear homogeneous 
recurrence relations 94–8

auxiliary equation 94
general solutions of  second-

degree homogeneous 
recurrence relations 101

shortest path problems 146–9
sieve of  Eratosthenes 26
strong mathematical induction 30–3
subgraphs 107
Sun Zi Suanjing The Mathematical 

Classic of  Sun Zi 57
symmetric 44, 45

T

Tower of  Hanoi 85–6
trails 109

Eulerian circuits and trails 129–33
transitive 45
Travelling Salesman Problem 153–4

brute force method 153
trees 111–12

minimum spanning tree 142
shortest path tree 146
spanning trees 119

V

value of  N in base b 6

W

walks 109
weak mathematical induction 30
well-ordered relations 14–15
Wiles, Andrew 68

X

Xunyu Zhou 77
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